
Volume:4 Issue:2, 1999

J a v a D e v e l o p e r s J o u r n a l . c o m

TM

SYS-CON
PUBLICATIONS

From the Editor
Java and All That JiBE

by Sean Rhody pg.5

Widget Factory
The JConfigure Widget

by Claude Duguay pg.58

SYS-CON Radio
Interviews from JBE
Host Chad Sitler pg.52

JDJ Reader Feedback
pg.49

Guest Editorial
The Synergy of Java

and CORBA
by Rob High pg.7

Straight Talking
The Price Is Right

by Alan Williamson pg.14

The Grind
Java – Into Its 4th Year

by Java George pg.66

RETAILERS PLEASE DISPLAY
UNTIL APRIL 30, 1999

Feature: Persistent Threads: Part 2 Andrei Cioroianu
When it comes to event preservation,
a persistent thread is worth a thousand objects 8

Feature: Programming with I/O Streams: Part 3 Anil Hemrajani
Your own custom stream classes can help
with special data processing requirements 18

Anything New Under the Sun: Brent Callaghan

Java Technology for NFS:
Using an Internet file access protocol to read/write files stored elsewhere 48

Techniques in Java: JavaNT Services Jim Barnebee
Migrating your Java server from UNIX to an NT boot-time environment 54

JDJ Special Product Showcase
JdbcStore, ClearQuest, ServletDebugger 2.0, Spirit 1.0,
eNetwork On-Demand Server, StudioJ, Novera jBusiness4 24

First Look: Oracle Extends
Support for Standards-Based SQLJ
A catalyst in the adoption of Java for developers 44

7 NEW
JAVA PRODUCTS
 REVIEWED

7 NEW
JAVA PRODUCTS
 REVIEWED

2 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Oracle Corporation
www.oracle.com/omfo/27

3VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ProtoView
www.protoview.com

4 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Schlumberger Ltd.
www.cyberflex.slb.com

5VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Java Developer’s Journal was among the many exhibitors at the Java Business
Expo at the Jacob Javits Center in New York City. I was only able to make it for one
day, but I managed to pack a great deal of interviewing, observation and conversation
into that day, in addition to presenting our Editor’s Choice Awards. (See JDJ Vol. 4,
Issue 1.)

Probably the biggest news from the show was the renaming of the JDK 1.2 and its
accompanying APIs to Java 2. This move is a signal from Sun that some changes are
happening with Java, and that now is the time to take notice. One important change is
in the way other vendors will license the Java platform. The so-called “Cold Room”
vendors – those who develop to the specifications from Sun, but who don’t use their
code – may find it easier to come in from the cold with the new licensing. Additional-
ly, Sun has relaxed on the requirement that innovators assign back to Sun the rights to
all improvements. Grumbling from vendors at the show indicated that perhaps these
moves were not enough, but only time will tell.

Interestingly enough, these moves may prove disastrous for Java. Why? Look at the
SQL standard, then try to find one vendor who fully supports it. Each database vendor
has its own proprietary, value-added version of SQL. Granted, the early SQL specifica-
tions lacked enough detail for procedural language, forcing the vendors to create their
own, but as a result, you can’t write a stored procedure in Oracle and expect it to run
in an SQL Server or DB2. While the Java specifications are much more detailed, the
license changes may allow for such differentiation. It’ll be interesting to see how these
changes are accepted and implemented.

I had a chance to have a good long talk with the IBM guys concerning their Appli-
cation Server offerings. IBM announced their WebSphere Enterprise edition, which
integrates EJB support into their WebServer offering. This announcement is less com-
pelling than the overall story that IBM can tell in the Server arena. What they offer
that’s unique is the ability to interoperate with a large variety of clients, servers and
operating systems. Add to that database support on any platform you care to name,
asynchronous messaging through MQSeries, and platform-specific native compilers
that turn byte code into native code, and you have a potent offering. Overall an evo-
lutionary – rather than revolutionary – product offering, but attractive nonetheless,
especially to those businesses with a significant investment in IBM technology.

BEA was another server vendor that I spent time with. BEA recently acquired
Weblogic and has renamed the company BEA/WebXpress. WebLogic was one of the
first EJB servers, and with the addition of the expertise of the BEA Tuxedo staff – par-
ticularly the expanded support organization – WebLogic looks to be one of the servers
that’ll survive the inevitable thinning of this particular field.

I also stopped by the NuMega booth for a look at some of their tools. They’ve
developed a particularly interesting thread monitor that can identify deadlocks and
other thread-related errors that are particularly difficult to track down. The tools only
run under NT, but since most development is done there, NuMega feels that it’s not
that big of a disadvantage. There are also a number of diagnostic and testing tools
appearing on the market, which should provide some relief to those of us trying to fig-
ure complex programming errors out with println statements.

I’m sorry that I had only a single day to spend at the JiBE show. Sun, as befits their
position as the parent of the whole movement, had a huge set-up that I didn’t get a
good chance to explore. On the whole though, I found that the two biggest topics of
the show were the Java 2 release and the rise of the EJB Application Server. I look for
this to be an interesting year for development.

About the Author
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a senior consultant with
Computer Sciences Corporation where he specializes in application architecture, particularly distributed
systems. He can be reached by e-mail at sean@sys-con.com.

Java and All That JiBE

FROM THE EDITOR

Sean Rhody, Editor-in-Chief
EDITORIAL ADVISORY BOARD

Ted Coombs, Bill Dunlap, David Gee, Michel Gerin,
Arthur van Hoff, Brian Maso, John Olson,
George Paolini, Kim Polese, Sean Rhody,

Rick Ross, Ajit Sagar, Richard Soley
Editor-in-Chief: Sean Rhody

Art Director: Jim Morgan
Executive Editor: Scott Davison
Managing Editor: Hollis K. Osher

Senior Editor: M’lou Pinkham
Production Editor: Brian Christensen
Technical Editor: Bahadir Karuv
Visual J++ Editor: Ed Zebrowski

Visual Café Pro Editor: Alan Williamson
Product Review Editor: Jim Mathis

WRITERS IN THIS ISSUE
Jim Barnebee, Brent Callaghan, Tim Callahan,

Andrei Cioroianu, Claude Duguay, Moe Fardoost,
Anil Hemrajani, Rob High, George Kassagbi, Gabor Liptak,

Qusay H. Mahmoud, Jim Milbery, Sean Rhody,
Robert Tiffany, Alan Williamson, Ed Zebrowski

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to the Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus airmail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Assistants: Robyn Forma
Jaclyn Redmond

Accounting: Ignacio Arellano
Graphic Designers: Robin Groves

Alex Botero
Webmaster: Robert Diamond

Customer Service: Sian O’Gorman
Paula Horowitz

Online Customer Service: Mitchell Low

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-7300 Fax: 914 735-6547

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize

its readers to use the articles submitted for publication.

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048 Phone: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.

SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.
All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

6 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

NetBeans
www.netbeans.com

7VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

When I began using CORBA in 1993 I was
impressed by how well (and easily) I could
define an object model and express it to other
developers. That, of course, is made possible
through CORBA Interface Language. More fun-
damentally, it is achieved with a strong and
inherent distinction between interface and
implementation – a distinction that’s often lost
in programming languages. CORBA IDL is
absolutely and only about interface.

After designing an object model based
strictly on interface semantics, I can ensure
that only the interface semantics forms the
contract for other users of my objects. My
users avoid building any dependencies on my
implementation semantics – thus increasing
both the portability of their applications and
the reusability of my objects.

The other thing distinctly impressive about
CORBA is its ability to scale. CORBA is about
architecture and specification of programming
models that are, at their very core, designed
and intended to be deployed and to interoper-
ate across distributed systems. On one hand,
the CORBA specifications are focused on pro-
gramming and deploying applications in a dis-
tributed system, but don’t define the qualities
of service supplied by any given implementa-
tion. On the other, these same specifications
don’t inhibit, and in fact specifically enable,
high levels of quality service in particular
implementations. This enables different ven-
dors to provide lightweight technology pack-
ages for small-scale deployments and robust
platforms for large, enterprise-scale deploy-
ments. The same fundamental programming
model can be used across all of these deploy-
ments from one end to the other -- mostly.

I encountered Java for the first time three
years ago at a CORBA conference – I was pre-
senting the merits of CORBA, and everyone
else was presenting the merits of Java. I was
overwhelmed with the hype and not just a little
skeptical about its applicability and durability.
Yes, Java seemed to introduce fundamental
productivity gains, and yes, the idea of “write
once, run everywhere” was enticing, but how
could a garbage-collecting interpretive lan-
guage scale? Moreover, the examples of its use
were mere toys -- silly demonstrations of
bouncing icons and checkers games. And, of
course, there was the meteoric rise in interest
in Java (remember Tickle-Me Elmo?)

But there’s important synergy between Java
and CORBA. Essentially, it comes down to this:
Java, and more particularly Enterprise Jav-
aBeans, provides a fully consistent program-
ming model that can be moved between plat-
forms supporting different levels of scalability.
CORBA provides the definition of infrastruc-
ture and services that enables different levels

of scalability in a distributed system. EJBs
close the gap between mostly transparent and
completely transparent scalability. This is
achieved by removing business object devel-
opers from any dependency on the quality of
service of the underlying platform. EJB devel-
opers concentrate on programming business
objects that encode business function rather
than information technology and infrastruc-
ture function. CORBA enables complete loca-
tion transparency, so that as an application or
enterprise grows, its infrastructure can be
scaled up as the EJB implementation remains
the same. Moreover, since EJBs don’t encode
quality of service assumptions, the qualities
of service can be increased (or decreased)
based on the evolving requirements of the
business.

Java and EJB define specific mappings to
CORBA services for Naming, Security and
Transactions, and in both directions between
Java interfaces and CORBA IDL. The quality-of-
service semantics that you can specify as EJB
descriptors – including the transaction man-
agement descriptors such as TX_REQUIRED
and TX_SUPPORTS as well as the run-as secu-
rity descriptors such as CLIENT_IDENTITY and
SYSTEM_IDENTITY – map well to semantics
that are easily implemented using CORBA ser-
vices and quality-of-service policies attributed
to CORBA Object Adapters. As a result, CORBA
and Java work well together – by design.

Java gives you portability (write once, run
everywhere), not just across heterogeneous
platforms as it always has but – when com-
bined with CORBA – across different qualities
of service and scaling. CORBA provides a com-
mon, consistent and interoperable specifica-
tion for distributed object management and
thus enables differing qualities of service and
scale on which EJBs can execute. An enterprise
can pick and choose a platform for its quality
of service and for how well it fits into their
overall computing requirements and budget,
rather than on the programming model con-
traints it might impose. Application developers
can increase productivity through the use of
Java language and its corresponding Web-
enablement features. They’re freed from infra-
structure issues and can concentrate on pro-
viding business value. Conversely, enterprises
obtain the flexibility to deploy their applica-
tions in a way that fits their integrity and scala-
bility needs gives them the interoperability
assurance provided by CORBA.

About the Author
Rob High Jr. is a senior programmer in
IBM Component Broker Architecture and
Development. He can be e-mailed at
rhigh@austin.ibm.com.

GUEST EDITORIAL

Rob High

CALL FOR SUBSCRIPTIONS

1 800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

Mail All Subscription Orders or
Customer Service Inquiries to:

EDITORIAL OFFICES
Phone: 914 735-7300

Fax: 914 735-6547

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

WORLDWIDE DISTRIBUTION by
Curtis Circulation Company

739 River Road, New Milford, NJ 07646-3048
Phone: 201 634-7400

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite 204
Solana Beach, CA 92075

Phone: 619 481-5928

SYS-CON
PUBLICATIONS

DEVELOPER’S

JOURNAL

SYS-CON Publications
CONTACT ESSENTIALS

SYS-CON Publications
CONTACT ESSENTIALS

PowerBuilder Developer’s Journal
http://www.PowerBuilderJournal.com

ColdFusion Developer’s Journal
http://www.ColdFusionJournal.com

VRML Developer’s Journal
http://www.VRMLDevelopersJournal.com

Secrets of the PowerBuilder Masters
http://www.PowerBuilderBooks.com

Java Developer’s Journal
http://www.JavaDevelopersJournal.com

The Synergy of
Java and CORBA

8 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

When it
comes to

event
preservation,

a persistent
thread is
worth a

thousand
objects

JDJ FEATURE

by Andrei Cioroianu

Persistence is our way to fight the
decay of time. We take pictures and film
events in order to remember, review and
analyze them. We freeze perishable prod-
ucts in order to preserve or transport them
over long distances. And in much the same
way, computer users save ideas and pro-
grams as files on hard disks and transmit
them over networks so that they too can
be printed and preserved – persisted –
over time.

The same technology used to preserve an
event (such as a camera taking a picture),
can be used to broadcast that event live,
over a network, assuring the event’s persis-
tence. And with computers, the Serialization
API of the Java platform is used to implement
the object persistence or to send objects via
Remote Method Invocation (RMI).

In a previous article (JDJ Vol. 3, Issue
8), I showed how object serialization might
be used to create persistent user inter-
faces (Reference 1). No threads were cre-
ated and all the classes used were serializ-
able. However, many Java API classes
aren’t serializable (i.e., they don’t imple-
ment java.io.Serializable). One of them is
java.lang.Thread.

Why Isn’t java.lang.Thread
Serializable?

The two main reasons why the Thread
class isn’t serializable are the dependence
of Java threads on the implementation of
the Java Virtual Machine (JVM) and the
interaction between the concurrent
threads. Respecting “The Java Virtual
Machine Specification” (Reference 2) and
obtaining the best performances when the
Java code is run become the main concerns
of JVM’s vendors.

Some JVMs are better than others
because JVM’s Specification is flexible,
allowing the vendors to adopt different
solutions. For example, the stack associat-
ed with a thread may or may not be contin-
uous and its size may either be fixed or can
change dynamically. In addition, the
threads execute a lot of native code (the
Java API has many native methods). When
this happens, the PC register (program
counter) associated with the thread has an
undefined value. Hence, the state of a
thread isn’t always accessible – even to the
Java Virtual Machine.

Even if a thread doesn’t execute native
code, it’s still difficult (if not impossible) to

detect at runtime all the objects accessed
in the thread’s code. Note that these
objects are stored in the JVM’s heap (which
is shared between threads.) Some might
have their locks locked by another thread.
When a thread waits for another thread to
release the lock of an object, other threads
may acquire the locks of other objects.
Using synchronization – without a correct
analysis of who might be waiting for who –
can lead to deadlock. Usually this analysis
can’t be made automatically. The communi-
cation between concurrent threads through
the shared memory is another obstacle for
the implementation of the thread persis-
tence at the JVM level.

These are only a few technical reasons
why the instances of the java.lang.Thread
class can’t encapsulate the state of the
threads from the JVM’s point of view. There-
fore there’s no point in making
java.lang.Thread serializable. This doesn’t
mean that there aren’t other ways to imple-
ment thread persistence, however.

PART 2

9VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

What Thread Persistence Actually
Means

“The Java Language Specification” (Ref-
erence 3) defines a thread as “a single
sequential flow of control” within a pro-
gram. To control the flow, the JVM creates
some data structures (the stack, PC, etc.)
for each thread. There may also be native
resources associated with each Java thread
(such as a native thread). The programmer
has limited control over a thread through
an instance of the java.lang.Thread class.

Each thread has a run() method that’s
called from the start()
method of the Thread object
associated with the thread.
After the start() method is
called, the thread becomes
alive. A thread dies when
the run() method returns
the control to its caller. The
System.exit() method kills
all live threads.

To be able to define what
the persistence of an entity
(such as an object or a
thread) means, you must

know what the state of that entity repre-
sents in the moments when this state must
be saved. For example, the state of an AWT
component consists of the set of the values
of its properties (dimension, colors, font
types, labels, etc.). Although the AWT com-
ponents have native peer classes, they can
be serialized because the properties that
define the state are member variables.
Unlike AWT components, the behavior of a
thread isn’t standard because it’s given by
the code of the run() method. It’s the devel-
oper’s task to identify the variables
accessed within this code that define the
state of the thread at a given moment.
Implementing the persistence of a particu-
lar thread means:
1. To define the state of that thread from

your point of view, not JVM’s;
2. To be able to save its state when the

thread is interrupted;
3. To be able to restart the thread and

restore it to its previous state prior to
being interrupted; and

4. The result of the thread execution must
be the same whether the thread was
interrupted or not.

What Is Thread Persistence
Good For?

Thread persistence is essential for
mobile agents, which basically are objects
that can move from one host to another
within a network. They’re very similar to
applets in that they run within a container
and have one or more sets of init(), start(),
stop(), destroy() methods (or equivalents).

They also possess a moveTo (URL destina-
tion) method which calls the stop()
method(s), serializes the Agent object (or its
equivalent(s)) and dispatches the bytecode
and the state of the agent to the destination
host. The agent is then deserialized by the
container of the destination host, which
calls the start method(s). It’s the agent
developer’s responsibility to override the
start() and stop() methods that must pre-
serve and retrieve the execution state,
respectively. This means that the program-
mer must implement the persistence of the

agent’s thread(s). For more information
about agents, see “Design of Multi-Agent Pro-
gramming Libraries for Java” (Reference 4).

Mobility is the main feature of mobile
agents. Other interesting, optional facilities
are communication through messages, the
means to clone and join agents, and even
artificial intelligence. This is why the agents
need a special container. If you only need to
move tasks to dynamically balance a dis-
tributed system, then you may implement
mobility in ordinary applications that use
RMI or sockets to transmit the current state
of mobile tasks (or threads).

The applications, which run for a long
time to accomplish a certain task, may also
benefit from thread persistence. These
applications can become more friendly if
they allow the user to suspend them and to
resume the task after an undefined period
of time. The state of the threads can also be
saved automatically from time to time so
the user doesn’t have to start all over again
after a crash.

In all three above scenarios, the pro-
grammer’s main task is to implement the
persistence of the threads. I will give you an
example of how to do that.

The PersThread Application
To be able to focus on thread persis-

tence I chose a simple example. The Pers-
Thread application opens a window that
contains a Close button and a canvas
object. The application uses a counter, ini-
tialized with 0, which is incremented every
100 milliseconds until it reaches
MAX_COUNTER == 300. The counter’s value
is used to compose a color like this:

Color c;
if (counter < 100)

c = new Color(counter/100f, 0, 0);
else if (counter < 200)

c = new Color(1, (counter-100)/100f,
0);
else

c = new Color(1, 1, (counter-
200)/100f);

The color and its RGB components are
shown in the application’s window (see Fig-
ure 1).

The PersThread class extends
java.awt.Frame and implements
java.lang.Runnable (see Listing 1). The
counter is run in increments within a
thread whose run() method is member of a
PersThread object. This object encapsu-
lates the state of the thread and represents
the window of the application. The state of
the application’s user interface, the
counter’s value and the value of the thread-
Stage member variable compose the
thread’s state. The static member variables
of the PersThread instance aren’t parts of
the state of the thread (they won’t be seri-
alized).

The user interface is built in the Pers-
Thread() constructor, which sets the back-
ground color, the title and the BorderLay-
out manager of the window. Next it creates
and adds a PTCanvas component and a
Close button. A PTAdapter object is created
and registered as an event listener to the
button and the frame. PTCanvas and
PTAdapter are inner classes.

The counter variable is given in incre-
ments in the computing() method, called
from run() (see Listing 1). The limit para-
meter indicates how many increments the
counter must have. After each increment,
the canvas is repainted and a 100-millisec-
ond pause is taken.

The run() method is executed in three
stages (i.e., it calls computing() three
times). The number of the current stage is
stored in the threadStage variable. If the

counter is in the red zone (i.e. 0 <= counter
<= 100), then threadStage == 0. If the
counter is in the green zone (i.e. 101 <=
counter <= 200), then threadStage == 1. If
the counter is in the blue zone (i.e. 201 <=
counter <= 300), then threadStage == 2.

This section has identified the state of
this thread. The next two sections show
how to interrupt this thread and serialize
its state.

Thread Breakpoints
The run() method calls computing()

three times. To simulate a real-world appli-
cation, I chose not to interrupt the comput-
ing() method, whose code may be seen as a
sequence that once started, must also be
completed. If the Thread.sleep() call
throws an InterruptedException, then the
mustBeInterrupted flag is set to true.
Before returning the control, the comput-
ing() method checks this flag. If its value is
true, then the interrupt() method of the
current thread is called.

The run() method calls breakPoint()
between two computing() calls (see Listing
1). The breakPoint() method uses
Thread.interrupted() to check if the inter-
rupt() method of the current thread was
called. If interrupted() returns true, then
breakPoint() calls the serialize() method of
the PersThread object to save the state of
the thread. Then it calls System.exit() to
close the application.

Note that the interrupt() method does-
n’t stop the thread. It just signals to the
thread that it should arrange its own death.
You must not use the stop() method (which
was deprecated in JDK 1.2) instead of inter-
rupt(), because stop() kills the thread with-
out warning. After a stop() call, the state of
a thread might remain inconsistent.

Implementing Thread Persistence
Now you know what thread persistence

means and what it’s good for. The next

question is how to implement the persis-
tence of the thread.

The state of that thread consists of the
state of the application’s user interface, the
value of the counter and the value of the
threadStage member variable. All this data,
which defines the thread’s state, is either
contained or referenced directly or indi-
rectly by the member variables of a Pers-
Thread object. The serialize() method of
this object calls writeObject() from the
ObjectOutputStream class to save into a file
the state of the thread whose run() method
counter is in increments.

ObjectOutputStream s = new ...
s.writeObject(this);
s.flush();
s.close();

If the Close button is clicked and the
thread is alive then the interrupt() method
is called (see the appExit() method of the
PTAdapter class from Listing 1). Then the
Thread.sleep() call from computing() will
throw an InterruptedException. The catch
of this exception is that it will neutralize the
effect of the interrupt() call. However, the
mustBeInterrupted flag will be set to true.
Before returning the control, computing()
will call the interrupt() method again.
Therefore, when the breakPoint() method
gains the control, Thread.interrupted() will
return true. Then breakPoint() will call seri-
alize() and System.exit(). Note that break-
Point() can gain the control only between
two calls of computing().

The next time the application is run the
main() method will have to restore the
state of the thread and restart it. The read-
Object() method of the ObjectInputStream
class will be called to deserialize the state
of the thread. If this operation succeeds,
then the window of the application will be
shown on the screen at the same position
with the help of the show() method. The

components will have the same state. Then
the main() method will create a new thread
call its start() method.

ObjectInputStream s = ...
pt = (PersThread) s.readObject();
s.close();
pt.show();
thread = new Thread(pt);
thread.start();

The start() method calls the run()
method of the PersThread instance. To con-
tinue the execution of the application from
the point where it was interrupted, the
run() method uses the value of the thread-
Stage variable. The computing() calls –
which were completed at the previous run
of the application – are now skipped. For
example, if threadStage is 1, then the appli-
cation was interrupted after the first com-
puting() call (before the counter passes
from the red zone to the green zone). The
first computing() call is then skipped so the
counter doesn’t have to go through the red
zone again. If the user clicks the Close but-
ton when the counter is in the green zone,
then the application is interrupted right
before the counter passes into the blue
zone. If the counter manages to enter the
blue zone before the user presses the Close
button, then the application can’t be inter-
rupted anymore because from this point,
no more breakPoint() calls are made.

If the deserialization fails (e.g., FileNot-
FoundException is thrown), then the
main() method creates a new instance of
the PersThread class, shows the window
and starts the thread.

pt = new PersThread();
pt.show();
thread = new Thread(pt);
thread.start();

An important observation is that the
result of the application’s execution is the
same, no matter whether the application is
interrupted or not (i.e., the white color is
shown after 300 increments of the counter).
In addition, the execution time is almost the
same because the main actions are the
same (i.e., the computing() method is com-
pleted three times whether or not the appli-
cation is interrupted).

Synchronization and Inner Classes
The code of the PersThread application

is executed within three different threads.
The first thread is created by the Java Vir-
tual Machine for the main() method of the
application. (The run() method of this
thread calls main().) The second thread is
created in the main() method. The run()
method of the second thread calls comput-

http://www.JavaDevelopersJournal.com10 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 2 1999

Figure 1 – The user interface of the PersThread application

11VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EnterpriseSoft
www.enterprisesoft.com

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal12

ing() for increments from the counter. I
implemented the persistence only for this
thread. The third thread is an EventDis-
patchThread of AWT. It takes events off the
EventQueue of AWT and dispatches them
to the appropriate AWT components. Most
code of the PTAdapter and PTCanvas class-
es is executed within the third thread.

After the computing() method calls
repaint(), a PaintEvent is dispatched to the
PTCanvas component. The event is
processed and the paint() method is execut-
ed within the AWT thread. The paint()
method needs the counter’s value to calcu-
late the color shown in the canvas of the
application’s window. The counter member
variable is accessed in two separate concur-
rently running threads (the second and the
third). Therefore, the code that increments
the counter (in computing()) and the get-
Counter() method have been synchronized.

Note that in this particular application
the synchronized keyword isn’t actually
necessary because the counter variable is
atomic (its type is int), and there’s no nega-
tive effect if getCounter() is called between
the two accesses of the counter member
variable from “if (counter <
MAX_COUNTER)” and “counter++;”. This is
a very rare combination of coincidences.
For example, if the type of the counter vari-
able had been nonatomic (e.g., long), then
the synchronization of the accesses to this
variable would have been compulsory. The
use of synchronization without reason is a
bad idea because it reduces the perfor-
mance of the application. In this article, my
purpose was to show that the persistence
could be implemented even for concurrent
threads. You usually have to synchronize
access to the member variables that are
used and modified in concurrent threads.
The local variables and the parameters of a
method can’t be accessed from concurrent
threads because their values are stored in
the stack associated with the thread that
calls the method.

A second important observation is that
the value of the counter is used in more
than one place in the code of the paint()
method of the PTCanvas component. This
method composes the color shown in the
canvas of the application’s window. The
counter’s value is copied into a local vari-
able because the computing() method can
increment the counter anytime. Though the
paint() method can access the counter
directly (because PTCanvas is inner class),
the right procedure is to call getCounter().
There’s no way to protect the member vari-
ables against the methods of the inner
classes. You must be very careful when the
methods of a class and the methods of the
inner classes are executed within concur-
rent threads.

Application’s Exit
The getCounter() method is also called

from the appExit() method of the
PTAdapter class. When the user tries to
close the application’s window or clicks the
Close button, an event is generated and
passed to one of the actionPerformed() or
windowClosing() methods. Each of these
two methods calls the appExit() method of
the PTAdapter instance that was registered
as listener to the application’s window and
to the Close button. The appExit() method
calls the interrupt() method of the thread
created in the main() method if this thread
is alive and if the value returned from get-
Counter() is less than MAX_COUNTER. Oth-
erwise, the .ser file created in the serialize()
method (when the application was inter-
rupted last) is deleted, before the
System.exit() call. This operation allows
the application to be restarted with counter
== 0 after its execution was completed with-
out interruption.

The System.exit() call from breakPoint()
is the simplest way to close the PersThread
application, but it isn’t the most refined
because it kills all threads without notice. If
an application must continue its execution
after the state of a thread was serialized,
then the breakPoint() method must be
modified. For example, it could throw an
InterruptedException instead of
System.exit() call. The run() method of the
thread would catch this exception and
would use the return instruction in the
catch block. From this point, the thread
would be dead and the application would
continue its execution.

Thread Persistence For Real-World
Applications

The PersThread application is simple
because it implements the persistence of a
single thread. A complex application from

the real world might be needed to imple-
ment the persistence for more than just a
thread. If the threads are independent, then
those with low priority might be interrupt-
ed and their state might be saved on disk to
release memory resources for the high-pri-
ority threads. Note that the state of a
thread can sometimes consist of huge data
structures.

The implementation of the persistence
may be very complex for concurrent
threads. You must analyze all the situations
where a thread might wait for another
thread to perform an unlock operation.
However, the programmer’s task is simpli-
fied by the fact that the lock and unlock
operations are automatically performed.

There are situations when the persis-
tence of a thread simply can’t be imple-
mented. A typical situation is when you
may not block a shared resource (e.g., a
database, a server, etc.), or, if you block it,
then you must unblock it as soon as possi-
ble – not after an indefinite period of time.

Summary
The programming technique presented

in this article is typically used in distrib-
uted systems to move tasks from one host
to another. Computing-intensive applica-
tions can become friendlier with the help of
thread persistence, which allows the user
to interrupt the applications and resume
them after an undefined time or a crash.

References
1. Andrei Cioroianu, “Persistent User Inter-

face for Multiuser Applications”, Java
Developer’s Journal, Vol. 3, Issue 8,
www.javadevelopersjournal.com/

2. Tim Lindholm and Frank Yellin, The Java
Virtual Machine Specification, Addison
Wesley, http://java.sun.com/docs/books/
vmspec/

3. James Gosling, Bill Joy, Guy Steele, The
Java Language Specification, Addison
Wesley, http://java.sun.com/docs/
books/jls/

4. Takashi Nishigaya, Design of Multi-Agent
Programming Libraries for Java, Fujitsu
Laboratories Ltd.,www.fujit-
su.co.jp/hypertext/free/kafka/paper/

About the Author
Andrei is an independent Java developer and writer.
You can visit his “(a) Java Developer’s Page” at
www.geocities.com/SiliconValley/Horizon/6481/,
and you’re invited to send questions or comments
about this article to andcio@hotmail.com.

andcio@hotmail.com

“The same technology

used to preserve an event

(such as a camera taking

a picture), can be used

to broadcast that

event live, over a

network, assuring the

event’s persistence.”

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

13VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Tidestone
Technologies
www.tidestone.com/javaspreadsheets

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal14 • VOLUME: 4 ISSUE: 2 1999

Here we are again – a couple of pages
telling you how it really is. What an inter-
esting and varied month this has been! And
a good month for Java. Lots of different
things have been happening.

(Before I begin, I want it known that this
is the first column I have ever written using
a Mac. I’m sorry, but as they say, “When in
Rome....” I’m out of my normal Gates world
and have been thrown harshly into this
Jobs utopia. I don’t know about you, but
better the devil you know and all that….
Before I go biting the hand that feeds me, I
have to thank Frode Hegland for allowing
me a bite of his Apple, for without it this
article would not have been possible.
Frode, on behalf of a Java nation, we thank
you!)

This was the month that Java entered
puberty. Like a newborn child finding its
feet in a forever-changing environment, a
significant milestone was reached. This
milestone marks the beginning of a new life
for us all. What am I talking about? Java 2,
of course. But more on that later.

Trait of the Month
As usual – let’s not deviate too much

from a tried and tested formula – we’ll dis-
cuss a personality trait. This month it’ll be
relief. That’s the feeling that washes over us
when we realize the situation isn’t as dras-
tic as we first thought. This was the month
we at N-ARY breathed a huge sigh of relief
that we had indeed taken the Java route.
Let me tell you a cautionary story so others
may heed the signs before it’s too late.

We’ve been involved in a major project
for the past 14 months. We were
approached by a Norwegian startup, Liquid
Information Company, to build them their
dream. Their dream was to change the way
people communicated by tearing down the
barriers surrounding conventional commu-
nication channels. Build a better e-mail sys-
tem, build a better newsgroup system,
build a better system.

So we took their plans, sat down and
designed a complete solution that would be
flexible enough to meet the demands of a
growing future. In other words, scalable. I’m
sure it won’t be too much of a surprise to

you to realize we used Java to complete
this. In actual fact, we built a complete Web-
based e-mail/newsgroup system using Java
Servlets, all linking back to a central e-mail
repository maintained by an Oracle data-
base. The whole thing worked like a charm.

Thank You, Oracle
At this juncture I must say a little about

Oracle. Think of it as an update, if you wish.
Some of you may remember one of the first
articles in this series (JDJ Vol. 3, Issue 8) in
which I highlighted the major problems we
were having with the JDBC drivers shipped
with Oracle. To recap, bottom line, we

couldn’t keep the Oracle drivers up long
enough to do anything with them. We
weren’t alone in this quest for longevity.
Many of you recounted similar tales of woe
to me after the article was published, in
addition to the many I found before the arti-
cle. Anyway, WebLogic came to our rescue
and supplied an Oracle-JDBC driver that
worked superbly.

One of the good things to come from the
article was that I was granted an audience
with Oracle at their HQ in Redwood City,

California. There they expressed their sur-
prise at my findings, but said they would
send me an updated JDBC driver to test.
Well, I can happily report that this new dri-
ver worked a treat. Just a shame it took the
publishing of an article to get a result. But it
was a result nonetheless. So Oracle, I thank
you.

How Sweet It Can Be
Back to our cautionary tale. Having

designed and built the system, we looked at
various platforms that could handle high-
volume traffic and run Java efficiently. Nat-
urally, we looked at Sun’s offerings. After
much deliberation we decided to purchase
an Ultra to host the system until the user
base grew, then we would migrate to a big-
ger system. Seemed a safe bet – no point in
overspecifying the hardware at this point in
the proceedings. So in January 1998, and
$6,000 later, we had a shiny new Sun Ultra
serving our client base. It was wonderful.
We were proud to be Sun users; we felt safe,
in the bosom of the family, safety in num-
bers and all that. Bit like how the early
adopters felt when they opened their Apple
machines. But, as we were to discover, this
“safety” came at a very high price.

What I’m about to tell you will scare you.
It will have you running for Linux – or, even
worse, NT. Yes, it’s that bad. Whatever you
do, please ask any accountants or financial
controllers to leave the room. It’s not pret-
ty, what I’m about to tell you. Everything all
clear?

As per the master plan, the Liquid Infor-
mation service grew quickly in numbers.
Only a couple of months after the release
we had to look at upgrading the Sun box.
Well, it did us proud all through develop-
ment and beta testing. The numbers were
growing rapidly and we needed an alterna-
tive. As luck would have it, Sun contacted
us with a promotion they were doing. Basi-
cally, they would lend us a new E250 server
for a month to see whether we would like to
move up to it. So we called our local Sun
reseller, MDIS, and had the machine
shipped to us. It came, a huge beast of a
thing, and once Oracle was installed it
worked wonderfully. Ignoring the fact that
we had to move the blooming thing to its
own room due to the level of noise it was
making, we were happy.

The Price Is Right

STRAIGHT TALKING

Or so you may think – but remember,
the devil is in the details

by Alan Williamson

“This milestone
marks the
beginning of a
new life for us all.
What am I
talking about?
Java 2,
of course.”

15VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Intuitive Systems,
Inc.

www.optimizeit.com

16 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The Price of Safety
MDIS called us and asked whether we’d

be interested in making a purchase. I indi-
cated my overall pleasure with the machine
and said, “Okay, let’s talk.” They came back
with a price of around $6,000. Excellent, I
thought. Since our Ultra was only nine
months old, I said we didn’t need two Sun
boxes for this particular application and
how much was our old box worth and
would they be interested in taking it as part
payment for the new box. MDIS said they
would, and, after many days of evaluating
the box, they came back to me with a price.

Remember, the Sun Ultra was purchased
only nine months ago and, with the obliga-
tory discount of around 40%, cost us
$6,000. MDIS was now offering to take the
machine from us for $1,200. What? As you
can imagine, I was not a happy bunny at
this stage. Within nine months the machine
dropped in value by around 80%? Even a
BMW won’t drop that much. I was disgust-
ed. First I thought, I know, it’s the fax
machine, maybe the “1” was supposed to
be a “4” or even a “3”. But, alas, the fax
machine was not to blame. It faithfully
reproduced the figures from MDIS.

Needless to say, the machine was not
bought. After all, what sort of company
could take a loss like that? No wonder Sun
is growing at a tremendous rate. It’s at the
expense of us smaller companies. But do
you know the ironic thing about all of this?
The price of the Ultra had not moved in the
six months prior to our purchasing the
beast. We had been researching the price of
Sun boxes for six months before making the
purchase and the price had not moved. And
to rub salt in the wound, in the summer of
’98, seven months after buying the first
Ultra, we phoned MDIS again to see the
price of a new Ultra as we had two and the
price quoted to us was the exact same. The
price had therefore remained constant for
at least nine months. But within four it had
fallen 80%. I would have been really angry if
we had made a decision to buy that second
machine in the summer. So the E250 was
quickly boxed and sent back.

After all, it was worth $6,000 the day it
arrived and now that we were sending it
back 30 days later it may have been worth
only $5,000 or something like that. It was a
risk we weren’t about to take. But we still
needed a server to run the Liquid Informa-
tion system for our client. The silver lining
in the whole episode was that we employed
Java. This meant we weren’t tied to any spe-
cific platform. We were free to choose. It
was like hearing a choir of heavenly angels.

Relief in Sight
Looking around at alternatives we were

impressed with what we saw. Our first port

of call was Dell, to inquire about their end
servers. Would you believe we could have
bought three higher-powered machines for
the price of one E250? Each machine came
with far more memory, far more disk space,
far more processor power…and as if this
weren’t enough, they were quieter.

“But they were a PC-based solution,” I
hear you Solaris diehards cry. Yes, you’re
right, but let me tell you, running Linux and
our benchmark tests absolutely knocked
spots off the E250. And because we had
chosen the Java route we didn’t even need
to recompile. The hardest thing we had to
do was to get the right password for FTP.

Now I’m sure I’m going to get tons of e-
mail from you Sun representatives detailing
the benefits that Solaris solutions can pro-
vide us with. But let me save you some
time. Don’t bother. We, the little guys, can’t
afford to buy into the Sun solution. The
falling price of PCs that include dual
processor solutions makes it cost-effective
for companies to take this route. We can
afford for our $1,400 solution to be worth
only $200 after 12 months. This is realistic
and the figures aren’t scary. In actual fact,
you get far more machine for your money.

For those of you who haven’t discovered
the wonders of Linux, you really ought to
spend some time researching this piece of
wonderful software. Think about it: Oracle
isn’t supporting it now out of the goodness
of their hearts. They see the damage it can
make and are sure as hell covering all bases
by deploying time and effort into porting
their database to it.

And that brings us nicely to Java 2, or
what was called Java 1.2. Publishers must
really love Sun for that version change, con-
sidering the number of books published
bearing the 1.2 mark. Java 2 is now official-

ly supporting Linux. Interesting, eh? Even
Sun is recognizing the threat. So don’t just
take my word for it – have a look around,
see how the big guns are treating Linux. Let
us not lose sight of the fact that when you
remove the need to process fancy graphical
interfaces, a 300 MHz processor is a serious
number cruncher.

Linux unleashes this power, which is
one of the main factors for its popularity –
apart from the fact that it’s also free, which
is never a bad thing. If that’s not enough,
the source code for Java 2 is now freely
available, once you’ve signed a Web-based
form. Sounds very like Linux, methinks.
This in my opinion is a good thing. Control
still needs to be exercised so we don’t get a
splintering of the Java platform, but freeing
the source will allow more application
areas to be explored that Java may have
excluded from the shortlist.

So, the moral of the tale? Don’t believe
everything you read in print (except for
this column, you understand – we’ll draw a
line here). Don’t be scared to explore other
options, and to breathe a huge sigh of relief
that you’ve chosen Java as your underlying
development language as this frees up
your hardware decision-making process.
Give yourself that pat on the back you
deserve.

The Book Nook
Before I close this column down, let me

recommend a must-have book. Last month
I introduced this new feature and you are
more than welcome to completely ignore
these books. But they will change your life.
This month’s life changer is Out of Control
from the keyboard of Kevin Kelly. It talks all
about the biology of machines and how the
computing world is striving to reproduce
the well-oiled machine of Mother Nature.
Kelly talks about developing perfect, error-
free code, which is truly inspirational.
Another thought-provoking subject area is
that of evolving software, the capability for
software to “evolve” a solution as opposed
to being given explicit instructions to solve
the problem. Every developer needs to
have this book on the shelf.

On that note I shall go and extract myself
from this Macintosh world, and immerse
myself back within the comfort of NT.

About the Author
Alan Williamson is CEO of N-ARY Ltd., a Java
consulting company with offices in Scotland and
Australia that specializes solely in Java at the server
side. Alan is the author of two Java Servlet books
and he has contributed to the 2.1 Servlet API. He
can be reached at alan@n-ary.com (www.n-ary.com)
and he welcomes all suggestions and comments.

alan@n-ary.com

“No wonder Sun
is growing at
a tremendous
rate. It’s at the

expense of
us smaller

companies.”

17VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

InetSoft Technology
Corp.

www.inetsoftcorp.com

18 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

In the previous two parts of this three-
part article (JDJ Vol. 3, Issue 12 and JDJ
Vol. 4, Issue 1), we looked at the fundamen-
tals of programming with Java I/O streams
and the various APIs they can be used with.
This month we’ll conclude this article by
discussing the concept of writing custom
(or, specialized) stream classes that can
process (or, filter) data in a special fashion.

Overview
The JDK provides several specialized

stream classes, the majority of which exist
in the java.io package. These classes pro-
vide a variety of functionality and usually
come in pairs – that is – one for reading data
and the other for writing data. For example,
the java.io.FileReader and java.io.FileWriter
provide the capability for file reading and
writing, while the java.io.StringReader and
java.io.StringWriter provide the capability
to use java.lang.String as a source for read-
ing data from and writing data to.

JDK Stream Classes
Before you decide to write your own spe-

cialized stream classes, it would be worth
your while to inspect the stream classes
provided in the JDK. There are two reasons
for this. First, there may already be a stream
class available for your purpose. Second,
you can use their source and documenta-
tion as examples for writing your own.

To give you a general idea of the various
streaming classes available in the JDK, Table
1 shows a complete list (excluding deprecat-
ed classes) of Stream classes available in the
java.io package in JDK 1.2. Table 2 shows
some additional stream classes available in
the java.util.zip and java.util.jar packages.

For more information refer to the JDK
1.2 documentation at http://java.sun.com.

Why Write Your Own Stream
Classes?

With such a variety of I/O stream classes
available in the JDK, you might be wonder-

ing why anyone would ever need to write
their own stream classes. Well, there are
several reasons why, but it’s mainly
because your application might require the
processing of a data stream in a special way
for which the JDK has no sufficient classes.

The following are a few possible candi-
dates for specialized stream classes.
• Accessing Special Storage Devices – With

so many storage devices available on the
market (such as tape and zip), there may
be a need to access them from a Java
application.

by Anil Hemrajani

Part 3
Learning how to write your own

custom stream classes can help with
special data processing requirements.

JDJ FEATURE

Programming
with I/O
Streams

Programming
with I/O
Streams

19VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

• Spell Checker – Java apps could use spe-
cialized stream classes that spell-check
data in a stream and give back a list of
misspelled words.

• Language Converter – A stream subclass
could be written to convert words in an
input or output stream from one lan-
guage to another.

• Text Search Or Screening – Specialized
stream classes could be used to search
for specific words and obtain their loca-
tions in a data stream. Example uses of
such classes could include a find feature

in a text editor or the ability to block out
certain content (e.g. adult content) in a
proxy server.

So, how does one go about writing a spe-
cialized stream class?

How To Write Specialized Stream
Classes

Writing your own stream classes is rela-
tively simple: for reading character
streams, you basically extend the
java.io.Reader class (or java.io.FilterRead-

er); for writing character streams, you
extend the java.io.Writer class (or
java.io.FilterWriter). For byte streams, you
extend the java.io.InputStream (or
java.io.FilterInputStream) for reading
streams; and java.io.OutputStream (or
java.io.FilterOutputStream) for writing
streams.

Note: To get a better understanding of
the differences between byte and charac-
ter streams, please refer to the first install-
ment of this three-part article (JDJ Vol. 3,
Issue 12).

Filter vs Top Level Stream Classes
When developing specialized stream

classes you can choose to either directly
subclass the top level classes (InputStream,
OutputStream, Reader, Writer) or you may
subclass the Filter classes (InputFilter-
Stream, OutputFilterStream, FilterReader,
FilterWriter).

The filter stream classes seem a bit
superfluous at times. However, they were
originally designed for convenience
because they provide default implementa-
tions for all the methods found in the top
level classes; this way, you override only
the methods you need to. For example, if
you extend InputStream directly, you’d
need to override the flush() and close()
methods, even though they’re not abstract
methods. This is necessary because these
methods have empty bodies in the Input-
Stream class. On the other hand, when you
extend the FilterInputStream class, you gen-
erally end up providing implementations
for two read() methods (versus one if you
extended InputStream directly).

Developing Specialized Character
Stream Classes

To develop specialized character stream
classes, you either subclass the Reader
class for reading data or the Writer class for
writing data. To develop a Reader subclass,
you must override and provide implemen-
tations for the following methods:
• int read(char[] cbuf, int off, int len)
• void close()

To develop a Writer subclass you must
override and provide implementations for
the following methods:
• void write(char[] cbuf, int off, int len)
• void close()
• void flush()

Developing Specialized Byte
Stream Classes

To develop specialized character stream
classes, you either subclass the Input-
Stream class for reading data or the Out-
putStream class for writing data. To devel-
op a InputStream subclass you must over-

• CheckedInputStream
• CheckedOutputStream
• DeflaterOutputStream
• GZIPInputStream
• GZIPOutputStream
• InflaterInputStream
• ZipInputStream
• ZipOutputStream
• JarInputStream
• JarOutputStream

Table 1: a complete list (excluding deprecated
classes) of Stream classes available in the

java.io package in JDK 1.2

Table 2: Some additional stream classes avail-
able in the java.util.zip and java.util.jar packages

• BufferedInputStream
• BufferedOutputStream
• BufferedReader
• BufferedWriter
• ByteArrayInputStream
• ByteArrayOutputStream
• CharArrayReader
• CharArrayWriter
• DataInputStream
• DataOutputStream
• FileInputStream
• FileOutputStream
• FileReader
• FileWriter
• FilterInputStream
• FilterOutputStream
• FilterReader
• FilterWriter
• InputStream
• InputStreamReader
• LineNumberReader
• ObjectInputStream
• ObjectOutputStream
• OutputStream
• OutputStreamWriter
• PipedInputStream
• PipedOutputStream
• PipedReader
• PipedWriter
• PrintStream
• PrintWriter
• PushbackInputStream
• PushbackReader
• RandomAccessFile
• Reader
• SequenceInputStream
• StreamTokenizer
• StringReader
• StringWriter
• Writer

ride and provide implementations for the
following method:

int read()

To develop a OutputStream subclass,
you must override and provide implemen-
tations for the following method:

Void write(int b)

Examples Of Specialized Stream
Classes Outside the JDK

Now that you have a general idea of the
variety of reasons for which stream classes
can be written, it would serve you well to
look at some concrete examples of special-
ized (non-JDK) stream classes.

Simple Examples
The following two examples, TeeOutput-

Stream and CountReader, provide simple
examples of writing specialized stream
classes. Later in this section, you’ll see a
more robust, real-world example using
Divya’s BackOnline commercial application.

TeeOutputStream
The class in Listing 1, TeeOutputStream,

provides an example of an OutputStream
subclass. The purpose of this class is not
only to write the bytes to the chained out-

put stream, but also to write them to anoth-
er output stream such as the System.out
device, or to a trace/debug file for debug-
ging purposes. The functionality provided
by this class is similar to the Unix tee com-
mand.

The code should be fairly easy to follow.
Basically, this class overrides the write(int
c), flush() and close() methods of its parent
class, OutputStream. Additionally, this
class provides a main() method for “self-
testing” this class. The write() method per-
forms the task of writing the data to two
streams.

CountReader
The class in Listing 2, CountReader, pro-

vides an example of a Reader subclass. This
class counts the number of characters and
lines in an input stream of characters. At
any point in reading the stream the
get*Count() methods can be used to obtain
the character, word and/or line count for
the data read up to that point. The func-
tionality provided by this class is similar to
the Unix wc command.

As with the TeeOutputStream class, this
class should also be easy to follow. The key
method in this example is read(), which
handles the task of counting characters,
words and lines.

A Real World Example:
Divya’s 100% Pure Java Backup
Application

Divya’s 100% pure Java applet/applica-
tion – BackOnline – is an Internet-based
backup, briefcase and archival application
that backs up a user’s data files from the
client machine to a server, as can be seen in
Figure 1.

BackOnline makes extensive use of
streams – everything from File Input/Out-
put streams to Socket streams to it’s own
specialized Protocol and Encryption/
Decryption streams. When a user backs up
a file (or files) in BackOnline, the file is

20 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX

DevelopMentor 23
www.develop.com 800 699-1932

Distinct Software 33
www.distinct.com 408 366-8933

Enterprise Solutions Conference 53
www.jumpstart99.com 888 823-DATA

EnterpriseSoft 11
www.enterprisesoft.com 415 677-7979

InetSoft Technology Corp. 17
www.inetsoftcorp.com 732 235-0137

InstallShield Software Corp. 29
www.sales@installshield.com/java 800 269-5216

Intuitive Systems, Inc. 15
www.optimizeit.com 408 245-8540

Java Developer’s Journal.com 50-51
www.javadevelopersjournal.com 800 513-7111

KL Group 21&68
www.klg.com 800 663-4723

Advertiser Page

NetBeans 6

www.netbeans.com 420 2/ 8300 7300

ObjectSpace 67

www.objectspace.com 972 726-4100

Oracle Corporation 2

www.oracle.com/omfo/27 800 633-0539

ParaSoft Corp. 61

www.parasoft.com/jtest 888 305-0041

Pervasive Software 55

www.info@pervasive.com 800 884-6265

ProtoView 3

www.protoview.com 800 231-8588

Sales Vision 47

www.salesvision.com 800 275-4314

Schlumberger Ltd. 4

www.cyberflex.slb.com 800 825-1155

SIGS Conferences 64-65

www.sigs.com 212 242-7447

Slangsoft 41

www.slangsoft.com 972 3-7518127

Snowbound Software 31

www.snowbnd.com 617 630-9495

Spring Internet World 99 57

www.internet.com 800 500-1959

JDJ Readers’ Choice Award 63

www.sys-con.com 914 735-7300

Tidestone Technologies 13

www.tidestone.com/javaspreadsheets 888 880-0665

The Object People 39

www.objectpeople.com 919 852-2200

Wall Street Wise Software 43

www.wallstreetwise.com/jspell.html 212 348-5031

Advertiser Page Advertiser Page

“Before you decide
to write your own
specialized stream
classes, it would be
worth your while to
inspect the stream

classes provided
in the JDK.”

21VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

KL Group
www.klg.com

22 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 2 1999 http://www.JavaDevelopersJournal.com

processed via a compression stream, then
an encryption stream, then sent over the
wire on a socket stream. The BackOnline
server receives this data using socket
streams and stores it in a file using file
streams. For restoring files, this process
simply works in reverse. The streams in use
during the backup and restore processing
are shown in the Figure 2.

Though most of the stream classes used
in BackOnline are available in the JDK (such
as socket, file and GZIP compression), there

are also two pairs of spe-
cialized stream classes
written by Divya; one for
the protocol used by the
BackOnline client and
server to communicate
with each other, the
other for encrypting and
decrypting the stream
using 56-bit DES encryp-
tion.

Protocol Stream
Classes

BackOnline uses a pro-
tocol almost identical to
HTTP version 1.1. Each
client request (such as
file backup) contains a
header followed by a
blank line followed by
the data for that
request. The stream
classes automatically
handle the separation of
the header and data por-
tions in the stream and
provide the appropriate
methods to obtain the
header values and
read() methods to read
the actual data.

The Java source for
the ProtocolInputStream
class (used for reading
in the protocol stream)

is shown in Listing 3.

Encryption Stream Classes
When a user logs in to BackOnline, he is

provided with a userid/password for
authentication, as well as an optional
encryption key (sort of like a second pass-
word), which is used to encrypt and
decrypt the stream. In other words, Back-
Online uses a key/password-based encryp-
tion/decryption scheme. Since this key is
always entered by the user and is never

physically stored anywhere, it provides an
extremely secure mechanism for transmit-
ting and storing the user’s data.

The Java source code for the CryptOut-
putStream class (used for writing an
encrypted stream) is provided in Listing 4.
While perusing this code, pay special atten-
tion to the write, flush and close methods
as they override their parent stream class’
methods.

After looking at the source code for the
TeeOutputStream, CountReader, Protocol-
InputStream and CryptOutputStream class-
es, you should have a very good idea of
how to write your own stream classes.

Summary
Although by now you might have an in-

depth understanding of how the Java I/O
stream classes work, it’ll still be worth your
while to peruse the JDK 1.2 source code
and documentation for the various stream
classes, especially the classes in the java.io
package (both can be downloaded from
http://java.sun.com). Remember, while I/O
streaming isn’t the most glamorous subject
when compared to other Java technologies,
it is, in a sense, the backbone of Java and
Java applications since they’re used in so
many APIs. Hence, a good understanding of
them is essential.

About the Author
Anil is a senior consultant at Divya Incorporated, a
consulting firm specializing in Java/Internet software
solutions. Anil provides Java/Internet-based
architecture, design and development solutions to
Fortune 500 companies, and occasionally writes
articles and speaks at conferences. He can be
reached at anil@divya.com.

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

anil@divya.com

Figure 1: BackOnline processing

Figure 2: Streams used by BackOnline

FILE Input/Output Streams

GZIP Input/Output Streams

CRYPT Input/Output Streams

PROTOCOL Input/Output Streams

SOCKET Input/Output Streams

PROTOCOL Input/Output Streams

FILE Input/Output Streams

SOCKET Input/Output Streams

CLIEN
T

SER
V
ER

TCP/IP Network

INTERNET

BackOnline Client

STORAGE

INTRANET

SERVER ENVIRONMENT
BackOnline Server Storage System

(typically a file system
but can also be a database)

http://www.JavaDevelopersJournal.com 23Java DEVELOPER’S JournalVOLUME: 4 Issue: 2 1999 •

DevelopMentor
www.develop.com

24 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

One of the
problems involved
with storing Java

objects in relational
databases is that the

objects and their relationships don’t usually
map directly to relational structures. Jdbc-
Store is a Java framework designed to help
you overcome this mismatch and allow you
to easily store objects in any JDBC-compati-
ble database. Using the JdbcStore work-
bench, you can model your persistent
objects, their relationships and how their
attributes map to database tables and
columns. Based on this model, JdbcStore
generates Java classes for creating, storing,
retrieving and manipulating your objects.
An additional collection of classes for han-
dling database connections, transaction
processing, SQL queries and object caching
round out the product.

How It Works
At the heart of JdbcStore is the concept

of a model describing your persistent
objects. Models are created and manipulat-
ed with the JdbcStore workbench and can
be saved to disk. Persistent objects are
called types within the model and their
properties define how the objects are per-
sisted along with other characteristics.

Using the workbench types can be
defined from scratch, loaded from existing
.class files or created from table definitions
obtained directly from the database. Associ-
ated with each type are persistent attribut-
es, attribute to database mappings, inheri-
tance information, key attributes, object
relationship definitions and cataloged SQL.
Once you define the persistent object types
you generate source code that implements
persistence for those types. JdbcStore also
generates SQL statements to create a data-
base to store the types if needed.

JdbcStore generates a user class, a per-
sistent extension class, a factory class and

even BeanInfo classes for each type. The
user class defines the persistent object and
is normally only generated for types that are
defined from scratch in the workbench. The
persistent extension subclasses the type to
implement persistence with methods such
as Store(), IsDeleted() and MarkDeleted().
The factory class is used to generate object
instances and includes methods such as
NewInstance(), FetchAll(), FetchForKey()
and FetchUsingSQL().

Within your application you use these
and other JdbcStore classes to load a
model, connect to the data source and work
with persistent objects. The database con-
nection is handled through a supplied ORB
layer for flexibility and objects can be
retrieved by using object relations or SQL
queries. Related objects can be instantiated
immediately or upon being referenced (lazy
instantiation). Object caching and concur-
rency control are supported also.

Installing
I bought JdbcStore online (both Win-

dows and Macintosh versions are available)
and downloaded a self extracting archive
containing the program. Running the
archive starts an unpacking wizard which
lets you select a location for the JdbcStore
installation files. Extracting the installation
files requires a product serial number and
digital key, which were quickly e-mailed to
me after my purchase.

You must have a Java VM installed on
your computer before installing JdbcStore.
Executing the JdbcStore.class file starts a
simple InstallShield installation process.
The only choice you have to make is the
installation directory (the default is
C:\LPC.) Installing JdbcStore took less than
five minutes and consumed under 6 MB of
disk space.

To run JdbcStore you need to add c:\lpc
and c:\lpc\symantec\symbeans.jar to your
CLASSPATH (assuming the default installa-

tion location.) If you have a recent version
of symbeans.jar (say from Visual Café) you
can use that instead. According to LPC Con-
sulting, the JdbcStore workbench makes
limited use of Symantec Beans and will be
converted to JFC in the future.

Setting Up
I tested JdbcStore on a Pentium 133 run-

ning Windows 95, with Visual Café 2.5 and
JDK 1.1.6. The database was Access 97 and
Sun’s JDBC-ODBC bridge was the JDBC dri-
ver. For this test I created a small Access
database with two tables called FRIENDS
and ADDRESSES. Using the Windows Con-
trol Panel – 32-bit ODBC Drivers – I set up
this database as an ODBC data source
named "testdb" using Microsoft’s Access
driver.

I then created a simple Person class in
Java with a few public attributes that I want-
ed to persist in the FRIENDS table. Get and
set methods were defined for each attribute
destined to be persistent along with a
method to print the person’s name. The get
and set methods are required for JdbcStore
to access the persistent fields. My goal was
to write an application that would do some
updates on the FRIENDS database and print
out each person's name and addresses.

Building a Model
The JdbcStore workbench is started by

executing “java com.lpc.jdbcstore.work-
bench.LPCMainFrame” from the JdbcStore
directory. The first steps once the work-

PRODUCT REVIEW

JdbcStore
by LPC Consulting

Java framework stores objects in JDBC databases
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
JdbcStore Version 1
LPC Consulting Services, Inc.
7 Geraldine Court
North York, ON M3A 1N9 Canada
Phone: 416 510-1660
Fax: 416 446-0559
E-mail: lpcsales@ilap.com
Web: www.ilap.com/lpc
Requirements: 100% Java, works with any Java
VM and JDBC driver.
Price: $99

JDJ
SPECIAL:
JDJ
SPECIAL:
PRODUCT SHOWCASE

by Tim Callahan

25VOLUME: 4 Issue: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

bench is started are to load a JDBC driver
and connect to your data source. I easily
connected to my test database by specify-
ing sun.jdbc.odbc.JdbcOdbcDriver as the
driver and a database URL of
jdbc:odbc:testdb. Once I was connected, I
quickly loaded the database definition into
the workbench by retrieving the SQL cata-
log. Figure 1 shows the definition of the
FRIENDS table that was loaded from Access.

Next I automatically generated a persis-
tent type definition for the Addresses table.
I didn’t do this for the FRIENDS table since I
wanted to use the Person class I’d created
earlier to access that data. Using Jdbc-
Store’s class loader I added my Person class
to the model and created a Person type. The
public fields and methods from Person.class
were visible and I added them to my new
Person type.

Next, I edited my new Person and
Address types to set up the database map-
pings. Since I had generated the Address
type from the table definition, it already
had attributes for each database column
with JDBC mappings, as shown in Figure 2.
For the Person type I had to set up the map-
pings to the FRIENDS table, which took me
a few tries before I got the Java variable and
column database types to match up prop-
erly. Once my model was complete I saved
it to disk.

Generating Source Code
Once the model was complete I was ready

to generate source code, which is done with
the workbench. For the Addresses type I gen-
erated a user class (since this type was
defined from scratch) along with factory and
persistent extension classes. For the Person
type I simply generated the factory and per-
sistent extension classes because wanted to
keep the Person.class file.

When generating source code you
can choose the names and locations for
the resulting Java classes. I used the
default names of Address.java for the
user class, lpcAddress.java for the per-
sistent extension, and AddressFact-
ory.java for the factory. All source code
is generated from token based tem-
plates that are provided and can be
modified if necessary.

Creating an Application
Writing an application (or applet)

using JdbcStore is straightforward. The
first things your application must do are
load the JDBC driver, connect to the
database and load the model. JdbcStore

comes with various classes to handle these
tasks. Once these steps are completed the
JdbcStore classes can create, fetch, manipu-
late, and store objects.

A wealth of sample code and an ade-
quate programming guide help get you
started. By following the examples, I quickly
created a Java application that loaded all
Persons from the FRIENDS table, printed out
their names, and then swapped their first
name and alias values. Then I quickly
extended the application to print each per-
son’s addresses under their name. To do
this I sub-classed the lpcAddress class and
added a PrintAddress() method instead of
modifying lpcAddress directly, thus avoid-
ing the need to reapply changes if the lpcAd-
dress class is regenerated.

The JdbcStore run-time classes contain
other useful features. The database connec-
tion is handled by an included ORB which
facilitates plugging in RMI or CORBA later.

The factory classes have an assortment
of fetch statements for filtering and sort-
ing objects. Classes to access the Jdbc-
Store model at run-time are included,
along with classes for managing run-time
object caching and concurrency control.

To deploy an application you need to
include a copy of the model, a set of Jdbc-
Store run-time classes and any classes
required by the application. To deploy an
applet you need a link to your model
(which can be opened using a URL)
instead of a copy. The size of my model
file was 6KB and the JdbcStore run-time
classes took about 200 KB as .class files
and 92 KB as a .jar file.

Some Caveats
JdbcStore has a few rough edges, which

is expected with a product’s first release.
The most notable shortcomings are in the
workbench’s user interface. Some standard
niceties such as browsing for folders in
dialogs are missing. Some functions don’t
provide as much feedback as I would like,
although details are often available in the
Java console. In one instance, I created a
Java compilation error in one of the gener-
ated persistent extension classes because I
didn’t define a key attribute for the type.
This type of invalid entry should be detect-
ed by the workbench. These problems don’t
detract too much from the product since it
is used by developers who are (usually!)
adaptable to these kinds of limitations.

My other warnings have more to do with
frameworks in general than JdbcStore itself.
One potential problem with frameworks is
that you have to adapt to their architecture
and syntax. JdbcStore is simple and intu-
itive enough that this should not pose a
problem. Another thing to keep in mind is
that your applications will be tightly cou-
pled to the framework so you should make
sure it includes everything you need before
you rely on it. JdbcStore seems full-featured
enough to be suitable for a variety of appli-
cations. You must also be careful about
modifying generated code, lest you find
yourself having to laboriously reapply
changes. JdbcStore is modular enough that
you should be able to eliminate this prob-
lem with good design.

Summary
With JdbcStore you can very quickly cre-

ate persistent objects and use them in appli-
cations. Some of its more powerful features
include source code generation, both object
oriented and SQL based data access, trans-
action processing, and object caching. Jdbc-
Store’s classes are intuitive, easy to use and
provide enough slots and tabs to meet many
needs. JDBC, an ORB layer, and customizable
source code templates provide flexibility.

JdbcStore still has a few rough edges but
they don't affect the product's usefulness.
As with any framework you should make
sure that you can use it to accomplish your
specific goals. The documentation is decent
and lots of sample code is included. At only
$99, JdbcStore is worth checking out if you
want to easily persist your objects or access
existing databases with Java.

About the Author
Tim is a software developer and consultant living in
Oakland, California. You can reach him through his
company’s Web site at www.palocolorado.com or at
tcallahan@palocolorado.com.

tcallahan@palocolorado.com

Figure 1: Table definition loaded from the database

Figure 2: Attribute to database mappings

All in all, it’s
been a pretty good
year. The hun-
dreds of clients
you’ve developed

applications for are
all happy. The software

development division has grown by leaps
and bounds. Then, just when it looks like
you’ve reached the pot of gold at the end of
the rainbow, trouble comes calling. It’s
been brought to your attention that some
clients aren’t getting the upgraded versions
of their orders. Some complain that they’re
receiving versions that seemed to be fine-
tuned for someone else. Still more disturb-
ing is the fact that the documentation
enclosed with the software isn’t always up
to date. When you investigate, you discover
a whole new layer of problems. It seems
that when changes are made to suit the
needs of the customer, not everyone is told
about it on time. The software development
teams are not “talking” to each other
regarding which changes are made to
which applications. The technical writers
aren’t being kept up to speed on what doc-
umentation needs to be rewritten. The peo-
ple in shipping aren’t always sure which
version is which, and that accounts for the
embarrassing problem of wrong software
being delivered to customers.

A system that enables developers to
keep everyone else updated on changes
made to your products is needed – some-
thing that everyone can access from his or
her desktop system and that’s tied into the
same database.

ClearQuest from Rational Software is a
Change Request Management (CRM) prod-
uct designed specifically for the modern
software development business. With it, a
team is quickly able to track and manage
changes and customizations to queries,
fields and activities. It makes the process of

managing change easy for everyone
involved to implement, deploy and maintain.

System Requirements and
Installation

I installed ClearQuest on two machines,
one as a server and another on the network
as user (this is the best way to test the soft-
ware). Both machines were equipped with a
Cyrix 150 and 64 MB of RAM. Installation
went smoothly on both machines. Although
the documentation I received didn’t specify
a minimum processor speed, it did list
some other requirements:
• Windows 95 or NT 4.0 with Service Pack

3; if you’re using NT, you must install
ClearQuest Designer

• One of the following databases: Microsoft
SQL Server 6.5 with Server Service Pack 3
or Microsoft Access (the current version
of the database engine is installed with
ClearQuest)

• MDAC (also supplied on the installation
CD-ROM)

• About 45 MB of disk space (up to 20 MB
on your system drive and 25 MB on the
drive where the programs will be
installed)

• An additional 15 MB of database space on
the database server for each thousand
records you plan to generate

• 32 MB of RAM

To install ClearQuest as the administra-
tor, take the following steps:
1. Set up the database. I used Access, so I

had to create a share for the databases. I
did this by making a UNC-style path:
\machine name\share name\ path-
name\filename\. During installation
ClearQuest creates and initializes an
Access database in this directory. It’s
important to remember this path as it
will be needed during installation.

2. Install MDAC, found in the \MDAC direc-
tory on the installation CD-ROM.

When Setup.exe is executed on the CD-
ROM, you get the familiar installation wiz-
ard. You will, however, be prompted for the
following information during setup:
• Server name and database name for the

schema repository
• DBO login account and password for

schema repository
• Read-only login account for schema

repository
• Server name and database name for the

SAMPL database (path if you’re using
Access)

• DBO login account and password for
SAMPL database

• Ordinary login account and password for
SAMPL database

To install ClearQuest as a user is even
simpler:
1. Install MDAC from the CD-ROM.
2. Click setup.exe on the CD-ROM.

During installation it’s necessary to
know the schema-repository database type.

Using ClearQuest
ClearQuest is opened by selecting it

from the Start menu, just as any other appli-
cation in Win95. You’ll be greeted by a login
screen asking for the user name and pass-
word, and there’s a drop-down list to select
which database will be utilized.

The main window, consisting of three
sections, will then appear. On the left-hand
side of the screen is the workspace, which
lists all available queries, charts and
reports. In the top center is the Query
Builder, where it’s possible to create

PRODUCT REVIEW

ClearQuest
by Rational Software

Providing a Clear path to integrating
all the platforms in your company

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
ClearQuest
Rational Software Corporation
18880 Homestead Rd.
Cupertino, CA 95014
Phone: 408 863-9900
Fax: 408 863-4120
E-mail: info@rational.com
Web: www.rational.com
Price: $1,295 ($3,295 bundled with ClearCase)

26 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 2 1999 http://www.JavaDevelopersJournal.com

JDJ
SPECIAL:
JDJ
SPECIAL:
PRODUCT SHOWCASE

by Ed Zebrowski

queries and view all query results. When a
record is clicked, its data is displayed in the
third section – the Record Form – which
covers the bottom of the window. Here it’s
possible to modify any query, chart or
report. Once modified, the changes can be
saved in a personal queries folder. New
folders can be created here as well.

Suppose a customer has pointed out a
slight defect in one of your products. It’s
now your job to make a record of the imple-
mented changes. This process is begun by
clicking “New Defect” on the tool bar at the

top of the screen. It’s a good idea to assign
a Priority and Severity level to the change
you’re about to make, with No. 1 being the
highest priority. It’s even possible to e-mail
other members of the development team
automatically to inform them of the change
request.

As the change to the software progress-
es, ClearQuest moves the change requests
through various “states.” When a request is
first submitted, for example, it’s in the “Sub-
mitted” state, where it’s possible to assign
the project to a specific team member.

Doing so will automatically change the
state to “Assigned.” When the team mem-
ber actually starts working on the project,
the state can be changed to “Opened,” indi-
cating that someone is now hard at work
on the project. This makes it effortless to
see if defects have been reported and, if so,
how far along you are on the road to recov-
ery. There’s even a Query Wizard that
streamlines the process of creating new
queries.

ClearQuest makes it possible to monitor
the progress of changes in many different
ways. For example, to see which developers
have the most responsibility, a bar can be
pulled up that graphically represents the work-
load for each engineer. The graph will also
show defects by State and Severity. Charts
may be modified by using the chart Edit Prop-
erties menu, or the Query Editor can be used
to filter the records included in the chart.

ClearQuest Designer: Making
Administration Tasks Simpler

The life of an administrator is never
easy, so the ClearQuest Designer is format-

ted to streamline many tasks. Upon open-
ing, the Open Schema dialog is displayed.
It’s not necessary to examine a schema
unless modifications are planned. One of
the many tasks the Designer can tackle is
administering to users and user groups. By
merely clicking the user groups icon, an
administrator can quickly open dialogs to
perform the following tasks:
• Define new user groups and assign users

to these groups. By customizing the
schema, access can be restricted to spe-
cific actions on the basis of user groups.

• Change passwords.
• Modify access and privileges. Users can

be given the ability to add more users to
a specific group. It’s even possible to give
users Schema Builder permission, and, if
necessary, the user can be given the sta-
tus of a Super User, which includes the
ability to add and delete databases.
The task of adding and updating databas-

es is included in the Designer as well. This is
as simple as selecting the new database and
supplying the requested information. Clear-
Quest recognizes each database by a five-
character tag that is part of the ID of the
records in that database. If desired, a more
“user recognizable” name can be added for
quick identification. Deletion of a database
doesn’t remove the database from the serv-
er, but merely removes it from ClearQuest’s
list of known databases.

Other Features
• Compatibility with Visual Basic: Clear-

Quest comes packaged with some Visual
Basic scripts, which can be used as
“hooks” to perform various tasks, and
edited for more complex tasks.

• Web access: Anyone with this feature can
modify change requests, generate
reports or run queries.

• Integration with ClearCase SCM (Soft-
ware Configuration Manager): Enables
users to determine which versions of
source code were modified and in what
order. It’s available for purchase bundled
with ClearCase.

New in ClearQuest 1.1
• Stronger integration with Rational

ClearCase, including support for
ClearCase users on UNIX.

• New integration with Microsoft Visual
SourceSafe and Developer Studio.

• New support for Oracle and SQL Any-
where databases.

• Improved Web interface adds more Win-
dows client functionality.

After using ClearQuest, I must say that I
was pretty impressed with it. If you’re a sin-
gle developer who services one or two
clients at a time, this product is obviously
not for you. For larger businesses, however,
the organization and ease that the product
offers makes it well worth the investment. It
could be just what you need to weave your
way through the chaos.

About the Author
Edward Zebrowski is a technical writer based in
the Orlando, Florida, area. Ed runs his own Web
development company, ZebraWeb, and can be
reached on the net at zebra@rock-n-roll.com.

Figure 2: Looking just like the user-end application, ClearQuest
Designer simplifies many administrative tasks.

Figure 1: The standard logon box

zebra@rock-n-roll.com

27VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

28 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ServletDebugger 2.0
works with your

favorite Java devel-
opment tool to
tackle the tough
job of debugging

and stress testing
Servlets. This tool

eliminates the usual “code, compile, cross
your fingers and test” method of Servlet
construction. ServletDebugger is a Java 1.1-
based library that works with a simple stub
class allowing you to step through your
Servlet code one line at a time. Servlets can
be tested with GET and POST request types
as well as unlimited init parameters, head-
er values and form data. Additionally,
ServletDebugger comes complete with a
built-in Web server to test and debug your
Servlet using your Web browser.

Normally at this point in a software
product review, I’d be giving you a long list
of requirements in order to make sure this
product worked with your system. Since
ServletDebugger is 100% pure Java, the
only requirement is a JDK 1.1 Java Develop-
ment tool that runs on your particular oper-
ating system. In my case, I installed it on
Windows NT Server 4.0. The InstallShield
setup worked without a hitch and included
the servletdebugger.jar file, a sample pro-
ject and documentation in Microsoft Word,
HTML, RTF and PDF formats.

The documentation gives an overview of

ServletDebugger’s features and capabili-
ties, how to use it with the included sample
project and a short tutorial in Servlet devel-
opment. Since the sample project and asso-
ciated documentation refer to Symantec’s
Visual Café for Java, I will describe how to
set up and use ServletDebugger with Bor-
land’s JBuilder 2.

In order to debug Servlets from within
JBuilder, you must first make servletdebug-
ger.jar available to the development envi-
ronment. With JBuilder open, select the
“Tools” menu and click on “Default Project
Properties….” Click the “Add” button on
the “Paths” tab. In the “Select a Java library
to add” dialog, click “New.” In the “Name:”
field type in “ServletDebugger.” Click the
“…” button to the right of the “Class Path”
field. At the bottom of the “Edit
LibraryClassPath” dialog, click the “Add
Zip/JAR” button. Use the “Add Zip/JAR” dia-
log to locate “servletdebugger.jar” from
your file system. Once you’ve found the file,
click “OK” at the bottom of the “Edit
LibraryClassPath.” Click “OK” at the bot-
tom of the “Select a Java library to add” dia-
log. Click “OK” to exit the “Default Project
Properties” window.

With the environment set, create an
empty project in JBuilder and then add
“SnoopServlet.java” and “SnoopServletDe-

bugger.java” from the sample Visual Café
project directory. At this point you can set
breakpoints in the “SnoopServlet.java”
Servlet, as seen in Figure 1, and then begin
debugging it by selecting the “Run” menu
and clicking on “Debug.” ServletDebugger
gives you two ways to debug your Servlets.
The normalModeTest method runs the
Servlet and sends the output to the error
stream System.err. The serverModeTest
method uses a built-in HTTP server to allow
you to submit multiple requests to your
Servlet from your browser. From there you
also have access to the Servlet Stress Tester
shown in Figure 2 which allows you to GET
and POST Form data to your Servlet for fur-
ther debugging and performance analysis.

Now that Servlets have really taken off,
ServletDebugger 2.0 fills a widespread
debugging and performance testing need.
You can now step through your code in the
same way that you would if you were debug-
ging a Java application. I think the docu-
mentation could use some beefing up in the
areas of sending different request types to
your Servlet using the normalModeTest
method. Seasoned Java developers should
have no trouble figuring things out, but a
novice might. All in all, I find ServletDebug-
ger 2.0 to be a great product that I personal-
ly find indispensable when it comes to
building professional Web sites.

About the Author
Robert Tiffany is a Senior Technology Consultant
with Insource Technology in Houston, TX. He can
be reached at robertt@insource.com.

PRODUCT REVIEW

ServletDebugger 2.0
by Live Software, Inc.

A pure Java servlet debugger and stress tester ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
ServletDebugger 2.0
Live Software, Inc.
5703 Oberline Dr.
Suite 208
San Diego, CA 92121
E-mail: contact@livesoftware.com
Web: www.livesoftware.com
Price: $195
Platforms: Any platform that supports Java 1.1

robertt@insource.com

JDJ
SPECIAL:
JDJ
SPECIAL:
PRODUCT SHOWCASE

by Robert Tiffany

Figure 1: The JBuilder code window

Figure 2: ServletDebugger’s Stress Tester

29VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

InstallShield
Software Corp.

www.sales@installshield.com/java

The product
was released in
September 1998,

but based on the
information on

the Web site, it’s still undergoing
development iterations.

Spirit is a presentation
builder environment
based on JavaBeans. It pro-
vides an extensive set of Bean-
based objects (images), presenta-
tion tool transitions and effects, and
also has the ability to “script” its objects
using Java standard Bean interaction con-
ventions. The product itself is partially
built using Spirit, and its UI shows proof of

this by providing more of a graphics work-
shop interface as opposed to the GUI
builder interface.

InstallAnywhere Doesn’t Work
Its installer utilizes InstallAnywhere,

which created a shortcut to the
application in the Start
menu, but curiously didn’t

create a link to the uninstaller.
The installation process
installs JRE 1.1.5 but doesn’t

include the javac compiler required for
its basic operations. Although the
README states otherwise, a separate

install of a JDK 1.1.x or JDK 1.1.x-compatible
Java programming environment is required

to make the product fully
functional. When the demo
version of the software does-
n’t have the proper key file
installed, it just locks up and
needs to be killed using the
task manager (see Figure 1).

I found the product inter-
face busy at a screen resolu-
tion of 1024 x 768. Spirit uti-
lizes three windows and sev-
eral toolbars to present its
information. The right-side
window is the editor, the left-
side window contains a fold-
er-based view of the avail-
able shapes (more can be
imported into the system
using JavaBeans) and the
bottom window contains a
folder-based view of the cur-
rent diagrams layout. I think
the product would benefit if
the folder-based view could
be switched to tree-based
view, because different sets
of controls could then be vis-
ible at the same time. The
editor window also serves as

PRODUCT REVIEW

Spirit 1.0
by eVisNet

A presentation environment based on JavaBeans
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
Spirit 1.0
Content development platform: Windows9x
Player platform: Netscape 4.x or IE 4.x browser

Pros:
Utilizes Java Beans (and their interactions) to pro-
vide a rich presentation environment
Presentation can connect to HTML and Java Media
Framework data types

Cons:
Inconsistent UI and small UI annoyances

The product costs $299, downloadable from
www.evis.net. There are no runtime fees for site
deployment, but a seperate license is to be negoti-
ated for embedding or intranet use.

Figure 1: Builder environment

http://www.JavaDevelopersJournal.com30 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 2 1999

JDJ
SPECIAL:
JDJ
SPECIAL:
PRODUCT SHOWCASE

by Gabor Liptak

a runtime environment, presenting most of
the actions on diagram without actually
packaging it for the runtime environment.
The current clipboard content is visible in
the upper left corner of the editor window,
containing the image of the shape selected
in the left window to be used in the current
diagram.

You are well advised to take the product
demo, “Let the Spirit Guide You,” offered on
the Welcome screen. It provides a good pre-
sentation of the product abilities. Consider-
ing the somewhat unusual interface of the
product, you may want to spend some time
reading the online help as well.

When I was creating a small sample dia-
gram to better understand the product abil-
ities, I ran into many small annoyances. The
Refresh button is named somewhat mis-
leadingly on the Properties dialog; it seems
to be for restoring settings instead. The
Properties dialog doesn’t provide a clear
indication for some non-modifiable proper-
ties. The Esc key is used to finish resizing
an object, although it’s mostly used to can-
cel moves within similar graphics products.
Spirit claims that there are two ways of
reviewing events – by using the debug fea-
ture called Review Actions, and from the
Edit Actions menu option – but I could find
no way to review the details on existing
events (except possibly by running them?).

I noticed some focusing and repainting
problems inside the Builder itself, which
I’m not sure whether to attribute to Java
AWT quirks or to the newness of the prod-
uct. The right mouse button (popup menu)
usage is inconsistent, e.g. you can’t use it to
call up the menu in the current diagram
frame. The usual helper functions of graph-
ical editing environments (e.g. line up,
same size, etc.) aren’t available either. This
is because Spirit has a simple grid which
only snaps to position when pasting new
objects or resizing them, unlike other
graphical environments which will snap
them all. If the product targets a generic
bean builder, LayoutManager-based posi-
tioning options should be available. There
seems to be no provision for listing last
accessed diagrams in the file menu.

The Player’s size is 170 K, which allows
deploying the generated diagrams via both
intranet and the Internet. Utilizing HTML and
Java Media Framework data type links and
the Beans based environment provides a rich
presentation environment not achievable in
traditional presentation tools without cus-
tom development and special add-ons.

A few other interesting features of Spirit
1.0 include:
• A geographically-based concept of a win-

dow moving over a large space contain-

ing information, thus saving screen real
estate and providing some very smooth
real-time zooming effects

• Spirit is an object browser and is able to
load other Spirit content without the
browser needing to load a new HTML page

• Tiny file sizes when deploying over the
internet, as well as a zip format and a
streaming option if deploying multiple
presentations.

I found the WWW site busy and too col-
orful, concentrating on the company prod-
uct(s), instead of associated information
that would help site navigation. The site
contains an extensive demo of Spirit which
highlights the different areas in which the
program is applicable.

At the time of this writing, the Player re-
quired a JDK 1.1.x-enabled browser, although
I noticed some stability problems when using
Netscape 4.5 on Linux. Considering Java’s
roots in the product, hopefully cross-plat-
form support will soon be available.

About the Author
Gabor Liptak has been programming since 1984, and
has been using high and low level object
orientation design and implemantation for the past
four years. E-mail him at gliptak@hotmail.com

gliptak@hotmail.com

31Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 2 1999 •http://www.JavaDevelopersJournal.com

Snowbound Software
www.snowbnd.com

With its recent
announcement of
the release of eNet-

work On-Demand
Server, IBM has raised

the stakes in the game of Java development.
Now it’s possible to personalize, secure,
manage and deploy your Java applications
from a centralized Web or Web application
server. On-Demand Server enables develop-
ers and system administrators to cus-
tomize Java application preferences for
individuals, groups or even a specific type
of client machine. All IDs, passwords, appli-
cations and profiles are stored on the serv-
er, which enables the same access policies
to apply whether the client is logging on
from the next cubicle or from a distant city.
All files that are critical to the application
are stored on the server, preventing users
from corrupting or illegally accessing files
and causing a system crash. This is a big
advantage over the traditional client/server
model.

System Requirements (Client):
• 100 MHz processor
• 32 MB RAM (end user)
• 48 MB RAM (administrators or end users

requiring additional performance)
• 10 MB hard drive space
• 800x600 pixels and greater than 256 col-

ors display

One of the following operating systems:
• Windows 95 or 98
• Windows NT 4.0 with Service Pack 3
• IBM OS/2 warp 4.0 with FixPak 4 or later

One of the following browsers:
• Netscape Navigator/Communicator 4.06

or later
• IE4.01 with service Pack 1

System Requirements (Server):
• 180 MHz processor

• 96 MB RAM (96 MB for each processor if
using a symmetric multiprocessor serv-
er)

• 100 MB hard drive space for NTFS format
(200 MB if FAT format)

• 800x600 pixels and greater than 256 col-
ors display

One of the following operating systems:
• Windows NT Server 4.0 with Service Pack

3
• Windows NT Workstation 4.0 with Ser-

vice Pack 3
• AIX 4.3
• PS/390 R5
• OS/2 Warp Server 4.0

Before On-Demand Server can be installed;
one of the following Web servers must be
installed:

• Lotus Domino Go Webserver 4.6.2 (Pro-
vided with the On-Demand Server pack-
age)

• Netscape Enterprise Server 3.51
• Netscape FastTrack Server 2.01
• Microsoft Internet Information Server 3.0

or 4.0

Installation
Before you attempt to install eNetwork

On-Demand Server, it’s important to make
sure your machine is properly set up to run
the product. While this isn’t necessary with
the client-side version, the server-side of
eNetwork can only function on a server-ori-

PRODUCT REVIEW

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
eNetwork On-Demand Server
Phone: 800 IBM-CALL (800 426-2255)
Fax: 800 2FAXIBM (800 232-9426)
E-mail: enetwork@us.ibm.com
Web: www.software.ibm.com/enetwork/on-
demand
Price: $79 per client

eNetwork
On-Demand Server

by IBM
Big Blue ups the ante in the Java market

Figure 1: By using the interactive splash screen, installation will be quick and painless!

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal32 • VOLUME: 4 ISSUE: 2 1999

JDJ
SPECIAL:
JDJ
SPECIAL:
PRODUCT SHOWCASE

by Ed Zebrowski

VOLUME: 4 ISSUE: 2 1999 • 33Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Distinct Software
www.distinct.com

entated OS. The version I tested ran on Win-
dows NT 4.0. It’s also vital to run one of the
supported Web servers that are mentioned
above. The version of eNetwork I tested
included the Lotus Domino GO! Web server.

When I inserted the CD-ROM into my
drawer, an interactive splash screen greet-
ed me. Among the selections I could choose
from were browsing the CD-ROM, viewing
the documentation, going to IBM’s Web site
and of course, installing the software. I
installed the server on an Intel 266 with 128
MB of RAM and found it to be fast and trou-
ble free. The workstations varied from a 133
to a 266.

If you have your autorun disabled or if
you don’t get the splash screen for some
other reason, installation is still pretty sim-
ple. Browse the CD-ROM to Help\onDe-
mand\en\gssetmst.htm, click on “Initial
Steps,” and you’ll find some very good
HTML documentation to walk you through
the process.

Configuration Is No Harder Than
Using a Web Browser

One of the features I liked best about On-
Demand Server is its configuration inter-
face. Unlike the command line interfaces of
some other servers, On-Demand uses your
favorite Web browser to accomplish this
once-gruesome task. When launched, the
Configuration Manager automatically
detects any installed services and displays
them in the left browser window. Clicking
on any given service brings it to the right
window, where a simple click or drag can
add, remove or modify.

Not only can a browser be used for basic
configuration, but to add, define and cus-
tomize Java applications as well. Software
changes are automatically accessed from
anywhere, saving the user the aggravation
of going through installations and
upgrades. This profile management inter-
face can also be used to assign user IDs and
passwords, and to define software user

access. I was able to configure quickly and
easily from the server, the workstation and
even from a remote dial-in location.

The profile manager features an exten-
sive set of class libraries. Applets written
with these class libraries can automatically
retrieve the end user’s data and prefer-
ences. When the user logs on, this cus-
tomized set of preferences is served to the
user and displayed in the Applet Launcher.
These applets are cached in the browser,
saving the user download time during
future sessions. If a new or updated version
of an applet is installed on the On-Demand
Server, the cached applet is automatically
updated at the next logon.

Using On-Demand Server
For testing purposes, I chose to use the

demo software that came with my package.
The installation, while lacking the interac-
tive splash screen, wasn’t too difficult. My
demo software CD-ROM contained a direc-
tory named “onDemand-ServerWin32-
Client” and a self-extracting zip file named
“serverClasses.exe”. It’s important that
these zipped files are extracted to the prop-
er directory. Make sure it’s (installed direc-
tory)\WebSphere\AppServer\web\onDe-
mand\Classes. Next go to the directory
named \WebSphere\AppServer\web\on-
Demand\Classes\local\nativeLauncher.
Locate two files named “load1.txt” and
“load2.txt”. The host name in each of these
files will be listed as “brqnta.raleigh.-
.ibm.com”. Change the name to the quali-
fied host name of your On-Demand Server.

Here’s where I committed a small error.
After my installation, I couldn’t
get the applet launcher to
behave properly. As it turned
out, the support files for Win32
clients must be installed on any
Win 32 machine that runs the
applet launcher, including the
machine hosting the On-Demand
server. I assumed that the applet
launcher on the Win NT server
would suffice, but I was wrong. It
seems that these support files
contain Java native interface
support for the client and are
vital because the browser JVMs
don’t support JNI. I could have
saved myself some time if I’d
properly read the documenta-

tion before I began. (Dad always used to tell
me to read the directions carefully before I
started anything, but I would never listen!)

Once I saw the error of my ways, instal-
lation of the support files went very
smoothly. This was accomplished by copy-
ing the directory named “onDemandServer-
Win32Client” from the CD-ROM to
“C:\onDemandServerWin32Client”. In this

directory there is a batch file named
“startJNIServer.bat” and it’s necessary to
edit one line in this file, a line that reads
“set PATH=WINDOWS_VERSION;%PATH%”.
If you’re using WIN NT, edit the line to read
“set PATH=winnt;%PATH%”, but for WIN 95,
it should read “set PATH=win95;%PATH%”.
After this quick edit, execute the “startJNIS-
erver.bat” file and leave it running for the
duration of the On-Demand Server opera-
tion. This will start the Java application as
a server program.

With that said and done, it was time to
start using On-Demand Server. The first sce-
nario I tested involved the migration of the
existing components into On-Demand Serv-
er. The first step was to migrate the existing
user and group definitions. This was easily
done by taking the following steps:
1. I defined a set of users and groups to the

native server. On WIN NT, all I had to do
is click Start – Programs – Administrative
Tools – User Manager. This displays the
current enterprise server configuration. I
then created two groups, shipping and
sales, and a user named emp1, which I
made a member of the shipping group.

2. I started the On-Demand configuration
console before I ran the migration tool.
This made it possible to watch the entire
migration process. I launched my brows-
er to http://(hostname)/IBMWebAS/-
onDemand/configure.html. It was neces-
sary to then enter the userid and pass-
word. Agfterwards, I went to “Profile
Management” in the left pane and clicked
on the lists: “User Groups” and “Users”. I
was then able to watch these lists grow
as the migration process continued.

3. I ran the “AddUsers” command from a
command line. In my WIN NT example,
the correct parameters were: AddUsers
–source ondemandnt –destination onde-
mand.

The next step I took was to import all
the necessary applications. Although this
can be done by a manual entry of parame-
ters, the example (thankfully) included an
import file. I took the following steps:
1. I started the migration tool by using the

same process as described in step 2.
2. I expanded the “Profile Management” in

the left pane, then clicked on the “Soft-
ware” tag to bring up the software config-
uration panel in the right pane.

3. I clicked on the “Import” button and
turned my browser to the directory Web-
Sphere/AppServer/web/onDemand/-
Classes/local/nativeLauncher. I then
selected the file “load1.txt” and clicked
on “import”. On-Demand Server then
began to import the software definitions
from this file. I was then able to view all
the new applications as they were added.

34 Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 2 1999 http://www.JavaDevelopersJournal.com

Figure 2: Your favorite Web browser is all you need
to run On-Demand’s Profile Manager

At this point, it was time to configure the
end-user desktops for employees of the
shipping department. This involved the fol-
lowing steps:
1. I expanded the “Profile Management” in

the left pane, and the “User Groups” tag.
Then I clicked on the “shipping” tag and
brought up the group configuration panel
in the right pane. All the users in this
group are displayed here. By clicking on a
member, I was able to assign software
permissions to that user.

2. I clicked on the “Software” tab in the
right pane, which brought up the view of
software assignments. A list of all avail-
able applications appeared and I was
able to assign them to a user by clicking
on them.

3. At this point it’s possible to customize
applications for the department. For
example, by bringing the “Software”
tabbed panel to the front of the screen, I
was able to click on “PhoneDialer”, and
then click the “Run/Customize” button.
From there, I could set up some speed
dial settings for the department.

At this point, it was necessary to repeat
the process for the sales department. This
demo used only two departments, but On-

Demand Server can accommodate as many
as necessary.

If end users feel the need, they can fur-
ther customize their own desktops and
applications. The administrator can, of
course, define sets of rules and parameters
to restrict these options.

The On-Demand Server Toolkit:
Easy to use class libraries that can
enhance your application’s effectiveness

The On-Demand Server Toolkit consists
of class descriptions, Javadoc, samples and
tasks. The toolkit is automatically installed
with the standard On-Demand installation.
Some features included are:

License Management class library and Bean
This is a nifty feature that, among other

things, has the ability to assist customers
by enabling per-seat-based charging. This
can inform customers when entitled licens-
es are soon to be exceeded. To use License
Management, there must be at least one
server running IBM License Use Manage-
ment Runtime on the network. This can be
installed on the same machine running On-
Demand server or any other machine on
the network. On-Demand Server will act as
client to IBM License Use Management Run-
time.

Log/trace facility class library
This enables centralized event logging

and tracing capabilities for applets. For
example, any significant change in the state
of a monitored system could be logged as
an event.

Profile Management class library
As described earlier, the Profile Manager

can define individual users, group users
and assign users and groups permission to
files or to run software.

All in all, I found IBM’s eNetwork On-
Demand Server to be a pleasure to install,
configure and use. The interfaces are user-
friendly, the Java classes are state of the art
and through the whole test, I did not expe-
rience a single crash.

If you’re a Java developer looking for a
more efficient way to manage and deploy
your network-based applications or if
you’re a network administrator who needs
a reliable and trustworthy network, place
all your chips on eNetwork Server On-
Demand. You can’t lose!

About the Author
Edward Zebrowski is a technical writer based in the
Orlando, Florida, area. Ed runs his own Web
development company, ZebraWeb, and can be
reached on the net at zebra@rock-n-roll.com.

http://www.JavaDevelopersJournal.com Java DEVELOPER’S JournalVOLUME: 4 Issue: 2

zebra@rock-n-roll.com

“All in all, I
found IBM’s

eNetwork
On-Demand
Server to be
a pleasure
to install,
configure
and use.”

Java DEVELOPER’S Journal

GET
YOUR
OWN!

GET
YOUR
OWN!

GET
YOUR
OWN!

$3999one
year

two
years

$6999

1800-513-7111
$69 one year Canada/Mexico

$99 one year all other countries

12 issues

24 issues

or subscribe online for faster service
subscribe@sys-con.com

Subscribe Today and receive
“JDJ Digital Edition” FREE!

save
$30!
save
$10!

So you’ve got a
nice Java applica-
tion in the works.

Your team has
toiled for weeks to get

it just right. Finally, the magic moment
arrives. The development team has a meet-
ing, and every part of the code is humming
perfectly, doing just what you intended it to
do. Now comes that final step, when the
code is brought together into one big appli-
cation. There’s just one last detail – it’s time
to make the program “user friendly,” which
usually means, among other things, adding
a GUI (graphical user interface) so the end
users don’t have to be programmers or
rocket scientists to use it.

Although there are many products on
the market that can do this, you, like your
end users, want something powerful, yet
easy to use. After all, you just spent all that
time and effort climbing up the develop-
ment mountain, so why not take an easy
road down?

If this sounds like your situation, I rec-
ommend you take a look at StudioJ by
Rogue Wave Software. StudioJ is a very fine
set of development tools that will add the
needed interfaces to your application with
a minimum of cost and effort.

System Requirements
and Installation

StudioJ will run on any JDK 1.1x-enabled
system. (It was recently announced that
Rogue Wave products with JDK 1.2 support
will be available in the first quarter of
1999.) If you want to use StudioJ with Java-
Beans, you must also use an Integrated
Development Environment (IDE) that sup-
ports JavaBeans.

I installed StudioJ over the JDK 1.1.7 by
running the class file named “setup.class”
from the CD-ROM. An installation program
initiated, and setup was a no-brainer from
there.

After installation, I soon discovered that
StudioJ isn’t one, but four powerful devel-
opment tools packaged together in one
suite. These components are available sep-
arately, as well. Let’s take a quick look at
each of these libraries and how the devel-
oper ca benefit from them.

Quickly Create Buttons, Bars and
Panels with Blend.J

There’s no doubt about it, end users are
unlike developers in one important aspect:
they don’t like to type at command
prompts! Any application that attempts this
is doomed to failure, therefore, it’s neces-
sary to add GUI components that are famil-
iar and easy to use. The most common of
these are buttons and “click here” bars.
Blend.J contains classes for over thirty dif-
ferent widgets, starting with the familiar
bars and radio buttons, and ranging to
some pretty tricked-out interface compo-
nents. Some of them include:
• ToolBar – Provides your users with an

easy shortcut to the most commonly
used menu items. Images that were creat-
ed in other development environments
can be reused by incorporating them into
the toolbar. The ToolBar class is a simple
java.awt.Panel with added border func-
tionality. The
image objects can
be displayed with
the use of any lay-
out manager.

• ComboBox – A one-
line editor with an
associated drop-
down panel that
enables the user to
click on the item of
choice. This also
includes a calendar
and a calculator.

• GroupBox – Groups
c o m p o n e n t s

together in a field with a decorative bor-
der. With groupbox, it’s possible to re-
position the text to any part of the field.

• DateTimeField – Enables the use of a
local-aware time or date field. This can be
configured in any practical way.

• CellGrid – A quick way to create spread-
sheet-like tables to display and manage
data.

• Animation – Enables the easy creation
and display of a looped set of images at a
specified rate.

• ImageButto – A set of classes that lets
you create buttons that display graphic
images instead of ordinary text. When
used with the Animation class, you can
display an animation loop on the button
rather than a static image.

• ProgressBar – Shows the progress of
lengthy operations in bar graph format.
This is most useful for use with printing
or downloading. At a glance, the user can
tell how much longer the operation will
take, or if the system has locked up.

PRODUCT REVIEW

StudioJ
by Rogue Wave Software

Create that GUI quickly and easily ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
StudioJ
5500 Flatiron Pkwy
Boulder, CO 80301
Phone: 888 442-9641
Fax: 303 447-2568
E-mail: sales@roguewave.com
Web: www.roguewave.com
Price: $995

Figure 1: Simple buttons and bars like these can be easily added with Blend.J

http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal36

JDJ
SPECIAL:
JDJ
SPECIAL:
PRODUCT SHOWCASE

by Ed Zebrowski

Emphasize the Meaning of Data
with Chart.J

Whether it’s a comparative study of
touchdowns scored by different teams, or
how the annual departmental budget will
be spent, nothing seems to drive home the
meaning of data like good charts. Chart.J
includes a set of Java packages and Beans
that enable you to use dynamic and cus-
tomizable charts in your application. You
may choose from built-in chart types or a
set of charting primitives that enable the
creation of your own specialized chart
types. Here are a few of the listed features
of Chart.J:
• JavaBeans version of all charts – Chart.J

features JavaBeans components for each
chart type and many chart parts. Chart.J
can be used in a Beans builder, and there-
fore charts can be included in the appli-
cation without writing code.

• Easy to use – When not using a Beans
builder, the set methods provided in the
Chart class and Style Customizers give
total control of the appearance of charts
with only a few lines of code.

• A wide range of standard chart types –
These include line charts, multi-row,
multi-column and stacked bar charts, pie
charts, multi-row and stacked area
charts. These can be displayed in either
two or three-dimensional versions.

• Chart overlays – Sometimes it’s necessary
to combine two or more charts to show
how different sets of values relate to each
other. Chart.J includes two prebuilt over-
lay charts to suit this purpose.

• Fast and easy customization of appear-
ance – Chart.J supports a wide range of
properties that control a chart’s visual

properties. These can be set in a Beans
builder or through set methods.

Interface with Databases by Using
DBTools.J

One of the most challenging aspects of pro-
gramming is creating an application that must
interface with a database. The long hours of
fist pounding and head scratching can now be
eliminated by the use of DBTools.J, a high-
level Java API for interfacing with relational
databases. DBTools.J doesn’t use SQL state-
ments, but classes that encapsulate database
elements such as tables and stored proce-
dures, or operations such as select and insert.
Some of the features that make your database
interfacing tasks easier are:
• Connection pool management – Rather

than manipulate connections, you can
create pools of connections, get these
connections from the pool and return
them when you’re finished. This can
greatly simplify the connection manage-
ment in a multithreaded application.

• Error checking control – Various types of
runtime error detection can be turned on
and off. For example, during develop-
ment, checking can be left on for debug-
ging purposes. Once finished, this can be
turned off to optimize performance.

• Thread safety – Shared classes are multi-
thread safe.

• Extensibility – All core abstractions can
be extended through inheritance. This
allows customization to meet future
application requirements.

• Portable SQL – High-level abstractions are
transparently converted to the SQL
dialect used by the server in which they
are executed.

• True Cursor objects – The DBTools.J Cur-
sor class takes on the functionality of a
cursor, thus hiding the underlying imple-
mentation details.

Bring Those Dull Grids to Life
Using Grid.J

The use of grids is vital in presenting
data to end-users. A colorful, animated or
interactive grid will not only emphasize the
data presented, but will enhance your end-
user’s experience as well. Grid.J provides
an easy way to create such grids. This
includes full formula support to turn a grid
into a fully functioning spreadsheet, utiliz-
ing automatic reference updates and circu-
lar dependency checks. Some of the more
noteworthy features include:
• Java Beans support
• Printing support
• JDBC support for database connectivity
• Formula support
• Grid can be made to act as a tree
• Support for the merging of cells
• Transparent background supported
• The browsing of external data with one

virtual override
• Smooth tracking of row and column size
• A wide variety of controls for use as cells

in the grid
• Row and column headers can act as

pushbuttons
• The embedding of custom controls
• Undo and redo support for grid opera-

tions
• Object-oriented architecture

One such use for Grid.J that comes to
mind would be the creation of an interac-
tive spreadsheet that can be threaded
through to DBTools.J for a user-friendly
database interface.

Perhaps you need a few simple naviga-
tional buttons to guide your end users
through an application. Maybe you just
want to use some interactive charts to
demonstrate next year’s projections. You
may be unlucky enough to have been
charged with the task of setting up a very
complicated database interface, using
spreadsheet-type input. No matter what
your GUI needs, StudioJ will be right for
you. I found it to be easy to install, easy to
use and best of all, you don’t need a super-
charged system to run it. Pound for pound,
buck for buck, this set of powerful develop-
ment tools is hard to beat.

About the Author
Edward Zebrowski is a technical writer based in the
Orlando, Florida, area. Ed runs his own Web
development company, ZebraWeb, and can be
reached on the net at zebra@rock-n-roll.com.

zebra@rock-n-roll.com

Figure 2: With Chart.J, complicated charts are no longer a big task.

37VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Novera Soft-
ware announced
the availability of
the most recent

release of their appli-
cation server software at the Java Business
Expo in New York in the early part of
December. Version 4 of Novera Software’s
jBusiness application server features a new
Component Constructor utility along with a
new Management Console and support for
Enterprise JavaBeans. The result is a pow-
erful combination that’s worth investigat-
ing if you are looking to deploy applications
using an application server.

Installation and Configuration
I installed the software from CD-ROM,

but you can also take a tour of the software
using the “jBusiness Experience” link from
Novera’s Web site. The installation is pack-
aged using InstallShield and I was able to get
the software installed and running within
minutes. jBusiness is tightly integrated with
LDAP, and previous releases of the software
required you to have directory services
already installed in order to work with the
product. To simplify the process of testing
the software, Novera offers two installation
paths for this new release. If you wish to
install the software on a standalone devel-
opment and deployment machine you can
use the Evaluation Installation. Should you
wish to work with an LDAP server you can
choose the Custom Installation path, which
allows you to either configure jBusiness to
work with your pre-existing LDAP server or
to install the bundled UMICH directory serv-
er. The evaluation installation is completely
automated, but you’ll need to gather some
information about your existing LDAP
installation if you want to make use of direc-
tory services. In both cases you’ll need to
have a copy of JDK 1.1.6 installed to work
with the Business Object Constructor or the
Component Constructor.

Novera ships the JRE 1.1.6 run-time
environment for the server, but you’ll need
to download the JDK to work with the tools.

Building an Application
The application server marketplace is

getting to be a crowded arena, but Novera
is differentiating itself by focusing on their
Distributed Business Objects. The jBusi-
ness application server is completely writ-
ten in Java, and Novera has tested the serv-
er on a variety of server platforms includ-
ing Solaris, HP-UX and Windows NT.
Novera’s Business Objects are Java classes
that have been mapped to relational data-
base objects. Business Objects are further
subdivided into two parts, the Business
Object Constructor, which is used to create
the code and the Business Object Contain-
er that performs the database access on

behalf of the applications.
The Business Object Constructor inter-

faces with the relational database, and the
first task for any development effort is to
connect the constructor interface to your
relational database. I was quickly able to
connect jBusiness to my existing Oracle
database for a fictional university using the
latest JDBC thin-client Oracle JDBC driver
as shown in Figure 1.

The Business Object Constructor con-
nects to your relational database and
allows you to construct Java classes that

PRODUCT REVIEW

Novera jBusiness4
by Novera Software

Just the thing for all your mission-critical
distributed application needs

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

Novera jBusiness4
Novera Software, Inc.
Burlington Office Centre
25 Corporate Drive
Burlington, MA 01803
Phone: 888 NOVERA1
Web: www.novera.com
Price: $3,495 per Developer, $9,995 per server /
$350 per concurrent user for Deployment

Figure 1: The Business Object Constructor

38 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JDJ
SPECIAL:
JDJ
SPECIAL:
PRODUCT SHOWCASE

by Jim Milbery

39VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The Object People
www.objectpeople.com

represent your relational database objects.
These objects manage all of the SQL tasks
such as generating queries, executing
queries and converting query results into
Java objects. With this release of jBusiness
you can now build a single object that com-
bines information from multiple tables, and
a single relational table can be deployed in
multiple business objects. This makes it
much easier to create custom business
objects that accurately represent the man-
ner in which your applications use the
underlying data.

The development interface automatical-
ly picks up the tables and key definitions
for you, but I wasn’t able to view database
procedures through the mapping facility.
Although there is ample documentation for
both HTML and PDF format, none of the
development and management consoles
provide any online help. Developers that
are used to having context-sensitive help
within the development environment will
find this frustrating. Strictly speaking, the
Novera product is not a Java application
development environment in the same vein
as Oracle JDeveloper, Symantec Visual Café
or Borland’s JBuilder. The Business Object
Constructor wraps complex database
objects as a series of Java classes, which
you can then edit or compile using your
favorite Java IDE.

The constructor itself is written in Java
and if you are used to working with an IDE
that is written in C/C++ you will find that the
constructor can be a little slow, although I
was able to run both development and
deployment on a single machine without
any problems. I quickly built several busi-
ness objects using my sample database, and
Novera provides a tutorial guide to help you
get up to speed with creating and deploying
business objects. This can be a trifle con-
fusing at first and I would recommend that
you follow the tutorial the first time through
to see how the whole process works. In gen-
eral, I considered the development environ-
ment easy enough to work with for a savvy
Java developer, but novices will have a more
difficult time getting up to speed.

During the process of creating and
deploying your business objects, you’re
provided with the ability to configure the
caching settings for the object. JBusiness
offers a sophisticated set of caching
options and you can define a particular
business object as being either volatile or
nonvolatile. The default setting for an
object is volatile, which causes the server
to read the item from the database auto-
matically when it’s referenced within a
transaction. Objects that change frequent-
ly, such as inventory levels, are best imple-
mented as volatile objects. On the other
side of the equation, business objects that

are static in nature such as tables of state
codes or part numbers can be delivered as
nonvolatile objects, in which case they will
be read from the cache.

Novera even offers a complete query lan-
guage for Business Object Containers that
allows you to have an incredible level of con-
trol over the caching machinations of your
objects. The installation CD comes equipped
with a number of sample applications, and
you can use these as a road map for building
and deploying your own applications.

Deploying and Managing
Applications

While Novera supports the complete
gamut of Web applications, including
servlets, it’s been designed with object
management in mind. The New Manage-
ment Console (see Figure 2) offers a com-
plete environment for managing your
objects and the various services that
Novera provides. The emphasis within the
management console is keeping track of the
various objects that you’ve put into pro-
duction. Novera supports the use of multi-
ple application servers and you can easily
display configuration information and per-
formance for any of the services that are
deployed to the server. The management
console itself offers a mix of monitoring
tools including charts and graphs, as well
as a number of wizards for configuring the
application server.

Once I had created my University Busi-
ness Objects and compiled them, I was able
to use a wizard interface within the manage-
ment console to deploy these objects to the
server. Novera is designed as a Java applica-
tion server and you can connect your jBusi-
ness objects to your favorite Web server.
The management interface supports a multi-
document style of display so you can moni-
tor multiple windows at the same time,

which is a nice feature. Furthermore, Novera
offers an extensive API that you can use to
customize the entire management environ-
ment. The jBusiness server supports a num-
ber of fault-tolerance features such as load
balancing, management server failure detec-
tion and object method-level failover. I
would recommend that you leaf through the
extensive System Administrator’s Guide
before you begin designing your applica-
tions so you can get an overview of the com-
plete capabilities of the jBusiness server.

Summary
Novera has made numerous improve-

ments on the latest version of their soft-
ware, and existing users will be pleased
with the additions and changes. The jBusi-
ness product is positioned from a pricing
and features standpoint to compete in the
Enterprise Application Server space. I
would recommend that you evaluate jBusi-
ness if you are looking to build large-scale
Java-based server applications. JBusiness
is aimed at the seasoned Java developer
who is familiar with using and deploying
mission-critical distributed applications.

Test Environment
Client/Server: Dell Pentium II 200 MHz,
64MB RAM, 4 Gigabyte disk drive, Windows
NT 4.0 (Service Pack 4), ViewSonic 15-inch
SVGA monitor, 3COM Etherlink XL Adapter
and 8X CD-ROM.

About the Author
Jim Milbery is an independent software consultant
based in Easton, Pennsylvania. He has over 15
years of experience in application development
and relational databases. Jim can be reached at
jmilbery@milbery.com, or via his Web site at
www.milbery.com.z

jmilbery@milbery.com

Java DEVELOPER’S JournalJava DEVELOPER’S Journal40 • VOLUME: 4 ISSUE: 2 1999 http://www.JavaDevelopersJournal.com

Figure 2: The New Management Console

41VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Slangsoft
www.slangsoft.com

42 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Program correctness may be viewed as
proof that the computation, given correct
input, terminated with correct output. The
person who invokes the computation has
the responsibility of providing the correct
input, which is a precondition. If the com-
putation is successful, we say that the com-
putation has satisfied the postcondition.
The Eiffel programming language (www.eif-
fel.com) for example, encourages program-
mers to provide a fully formal proof of cor-
rectness by writing assertions that may
appear in the following roles:
• Precondition – a condition an operation’s

caller agrees to satisfy. In Eiffel the key-
word require introduces a precondition.

• Postcondition – a condition that the
method itself promises to achieve. In Eif-
fel the keyword ensure introduces a post-
condition.

• Invariant – a condition that a class must
satisfy at all times. The invariant keyword
introduces an invariant in Eiffel.

These three roles collectively support
what is called the contract model of pro-
gramming, a model that’s well supported by

the Eiffel programming language. Java, on
the other hand, doesn’t have built-in sup-
port for this model. Actually, Java doesn’t
even have built-in support for assertions.
However, Java has a far superior feature to
assertions – exception handling (see the
Java tutorial on JavaSoft, “Handling Errors
with Exceptions,” for details).

C-Style Assertions
An assertion is a Boolean expression

that, if evaluated as false, indicates a bug in
the code. This mechanism provides a way
to detect when a program starts falling into
an inconsistent state. Assertions are also
excellent for documenting assumptions and
invariants about a class. Using assertions
helps programmers write better code in
terms of correctness, readability and main-
tainability. Thus they improve the odds
that the behavior of a class matches the
expectations of its clients.

In C/C++ you can use assertions through
assert. In ANSI C, assert has the following
definition:

void assert(int expression)

The assertion will be executed only
when the macro NDEBUG is undefined. The
program will be aborted if the expression
evaluates to false (0); if the expression eval-
uates to true (non-0), assert has no effect.
For performance reasons, however, you
should write assertions into software in a
form that can be optionally compiled. Thus
assertions should be executed with the
code only when you’re in the debugging
stage of software development -- that’s
where assertions will really help in flushing
out errors. Note: Assertions represent a uni-
form methodology that replaces the use of
ad hoc conditional tests.

Implementing Assertions in Java
You can implement assertions in Java

quite nicely. First, create a new exceptions
class for your assertions class, as shown in
Listing 1.

Listing 1 extends RuntimeException, a
direct subclass of Exception. Basically,
there are two kinds of exceptions: checked
and unchecked. The possible exceptions in
Java are organized in a hierarchy of classes
rooted at class Throwable, which is a direct
subclass of Object. The classes Exception
and Error are direct subclasses of Throw-
able. Instances (and subclasses) of Error
and RuntimeException are called
unchecked exception(s) (classes).

In checked exceptions the Java language

PROGRAMMING TECHNIQUES

Programming Correctness,
Assertions and Exception Handling

Classes in an OOP language should be known by
the methods they provide – and by the behavior

and formal properties of those methods
by Qusay H. Mahmoud

Listing 1: An Exceptions Class
/**
*AssertionException.java
* @author Qusay H. Mahmoud, dejavu@acm.org

*/

AssertionException.java public class AssertionException extends
RuntimeException { public AssertionException() {
super(); }; public AssertionException(String msg) {
super(msg); } }

Listing 2: An Assert Method
/**
*Assert.java
* @author Qusay H. Mahmoud, dejavu@acm.org

*/

Assert.java public class Assert { public static boolean NDE-
BUG = true; public static boolean assert(boolean
expression) throws AssertionException { if
(NDEBUG && !expression) { throw new AssertionExcep-

tion(); } return true;
} }

Listing 3: Implementing the Assert Class
/**
*Test Assertion.java
* @author Qusay H. Mahmoud, dejavu@acm.org

*/

import java.io.*; public class TestAssertion { public static
void main(String argv[]) { BufferedReader is = new
BufferedReader(new InputStreamReader(System.in));
System.out.print("Please input a number: ");

System.out.flush(); String ans=null;
try { ans = is.readLine(); }

catch(IOException e1) { System.out.println("Error:
"+e1); } int n = Integer.parseInt(ans);
// Assert.NDEBUG = false; // Uncomment the above line
// to turn assertions off.

Assert.assert(n > 0); // Use n. }
}

43VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

checks at compile time whether a Java pro-
gram contains handlers for exceptions.
However, unchecked exceptions (as in Run-
timeExceptions) are excluded from this
checking. Thus Java simplifies the pro-
grammer’s task by not requiring you to
declare such exceptions, which could be an
irritating process.

The code in Listing 2 implements an
assert method, which takes a Boolean
expression as an argument and checks
whether it’s true or false.

If it’s false, your new exception, Asser-
tionException (declared in Listing 1), will
be thrown; otherwise nothing happens.
Note that in the assert method you’re also
checking whether the value of NDEBUG
(which is Boolean) is on or off. If it’s on (set
to true), then the assertion is to be execut-
ed; otherwise it should have no effect. Also
note that clients who use the Assert class
should be able to change the value of NDE-
BUG from their own programs.

Listing 3 provides a simple demonstra-
tion of how to use the Assert class. If you
don’t want assertions to be executed as
part of the code, you could declare the line:

Assert.NDEBUG = false

which is really an easy way of turning off
the execution of assertions.

If you run the program in Listing 3, you'll
see the following output:

% java TestAssertion
Please input a number: -1
AssertionException

at Assert.assert(Assert.java:5)
at TestAssertion.main

(TestAssertion.java:15)

A word of caution: never use the Assert
class expression that involves side effects.
Writing

Assert.assert(++i > 0)

for example, isn’t a good idea, because the
variable i won't be incremented if
Assert.NDEBUG is set to false!

The Downside of Assertions
The use of assertions replaces the ad hoc

use of conditional tests with a uniform
methodology. This methodology doesn’t
allow for a repair strategy to continue pro-
gram execution, however. This means that
when an exception is detected, the program
aborts with no recovery mechanism. This is
certainly preferable to undefined behavior
when something goes wrong, but it’s unac-
ceptable for a wide variety of applications.
For example, a program that acquires

resources (e.g., a lock on a database) should-
n’t be allowed to abort without releasing
those resources. A superior feature to asser-
tions is built into Java – exception handling.
It’s superior in the sense that it allows you,
using try/catch/finally, to throw an excep-
tion object instead of aborting.

Conclusion
When writing programs, you’ll find it’s a

good idea to put checks at strategic places
for violations of basic assumptions. These
checks help in debugging code. The Assert
class implemented in this article provides a
convenient way for programmers to abort
Java programs while printing a message
stating where in the program the error was
detected. Remember, these messages are
for us – the programmers – not for users.
Exception handling in Java is a superior
methodology for handling errors when
something goes wrong.

About the Author
Qusay works for Etisalat College of Engineering,
UAE. Previously he worked for Newbridge Networks
and Carleton University, both in Canada. Qusay is
the author of an upcoming book on distributed
programming with Java. You can reach him at
dejavu@acm.org.

dejavu@acm.org

Wall Street Wise
Software

www.wallstreetwise.com/jspell.html

http://www.JavaDevelopersJournal.com

Oracle’s development team is excited about
the news that SQLJ has achieved standard
status (ANSI X3.135.10-1998).

“It will undoubtedly be a catalyst in the adop-
tion of Java by enterprise application developers.
SQLJ not only allows SQL to be incorporated
into Java programs in a standard way, it paves
the way for database and Java tools vendors to
bring Java closer to the enterprise environ-
ment. Oracle has been a firm supporter of
SQLJ right from the early days when it
cofounded the SQLJ consortium which sub-
mitted the SQLJ proposal to ANSI.”

This Java Developer’s Journal feature
article will introduce you to the nuts and bolts
of SQLJ with a look at Oracle’s implementa-
tion and full support for this technology.

What Is SQLJ?
SQLJ provides a standard to embed SQL

statements in Java programs. When writing
an SQLJ application, a user writes a Java
program and embeds SQL statements in it,
following certain standard syntactic rules
that govern how they can be embedded in
Java programs. The user then runs an SQLJ
translator, which converts this SQLJ pro-
gram to a standard Java program and
replaces the embedded SQL statements
with calls to the SQLJ runtime. The gener-
ated Java program is compiled, using any
Java compiler, and run against a database.
The SQLJ runtime environment consists of
a thin SQLJ runtime library that’s imple-
mented in pure Java, and in turn calls a
JDBC driver targeting the appropriate data-
base.

How Does SQLJ Work?
An SQLJ program is typically compiled in

two steps. In the first step, an SQLJ Translator
translates the SQLJ application; in the second
step, any Java compiler can be used to com-
pile those Java files. Figure 1 shows the steps
involved in writing SQLJ applications.

SQLJ Translator
An SQLJ Translator performs two impor-

tant functions:
• Translating the SQLJ Source Code – The

SQLJ Translator translates the SQLJ appli-
cation into a Java application with calls to
the SQLJ runtime; it replaces the SQLJ
clauses and generates a set of standard
Java source files.

• Type Checking – SQLJ Translator performs SQL
syntax-checking, schema-checking and type-
checking of host variables at translation time if
the logon information to the database is provid-
ed. This is performed statically, i.e., all SQL state-
ments in the program are checked, irrespective
of the actual code paths executed at application
runtime.

Compiling and Running an SQLJ
Application

A compiled SQLJ application is a standard Java
program that can run wherever a Java VM, the SQLJ
runtime library and a JDBC driver are available.
There are three important aspects to consider
regarding executing SQLJ applications:
• SQLJ Runtime – At runtime, an SQLJ application

communicates with a database through the SQLJ
runtime library, which is a thin layer of pure Java
code above a JDBC driver.

• Type Safety – SQLJ associates the properties of
result sets and database connections with the
types of Java objects that represent them so those
types can appear in the interfaces between sepa-
rately developed Java components. For example,
the shape of rows of an iterator object (the num-
ber and types of the columns) is encoded by its
type (its class). That iterator class can appear as
the types of parameters and results in the inter-

Java
source

file

Java
.class

file

Java
Compiler CustomizeSQLJ

code

Oracle

SQLJ
Translation

Oracle

Run
Java

source
file

Java
.class

file

Java
Compiler CustomizeSQLJ

code

Oracle

SQLJ
Translation

Oracle

Run

ODBC C
Library

OCI C
Library

Java
Sockets

JavaSoft
ODBC Based

Driver

Oracle
JDBC/OCI

Driver

Oracle
Thin JDBC

Driver

SQLJ Runtime library

SQLJ Application

Figure 1: SQLJ development process

Figure 2: SQLJ runtime configurations

Oracle
Extends
Support
for
Standards
Based
SQLJ
SQLJ brings
Java closer
to home

by Oracle’s SQLJ Development Team

F
I

R
S

T

L
O

O
K

F
I

R
S

T

L
O

O
K

Java DEVELOPER’S Journal • VOLUME: 4 ISSUE: 2 199944

45VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

faces between software components. Therefore,
components can exchange SQL result-set data as
type-safe, first-class objects with known row
shapes, which allows the SQLJ Translator and Java
compiler to check accesses of column data.

• Binary Portability – Applications translated by
SQLJ can access any database with an imple-
mentation of JDBC or a compliant implementa-
tion of the SQLJ runtime API. This property of
binary portability allows compiled applications to
be portable not only across platforms, but also
across different vendors’ databases.

SQLJ Deployment
From a platform point of view, the only require-

ments for running an SQLJ program are the avail-
ability of:
• The SQLJ runtime library
• A JDBC driver; Oracle’s SQLJ Translator can be

used with any JDBC driver

• A Java Virtual Machine, where SQLJ programs
will execute

Deployment Scenarios
SQLJ programs can be deployed in a number of

different configurations, including:
• Fat or thin clients
• Middle-tier Java Web servers or application

servers
• A stored program on the Java Virtual Machine

integrated with the Oracle8i database

Since the SQLJ runtime library is a thin layer
of pure Java code that sits above the chosen JDBC
driver, users must choose the JDBC driver best suit-
ed for their particular deployment configuration.
Figures 3-6 illustrate how Oracle’s SQLJ Translator
can be used in combination with Oracle’s
own JDBC drives in four different deployment con-
figurations.

SQLJ Features
The following is a look at SQLJ’s most important

features.

SQLJ Clauses
Static SQL statements appear in an SQLJ pro-

gram text as SQLJ clauses. An SQLJ clause is intro-
duced by the token “#sql”, and contains an SQL
statement inside curly braces. An executable SQLJ
clause may appear wherever a Java statement may
appear. Here is an example of an SQLJ clause that
contains a SQL UPDATE statement:

#sql { UPDATE TAB SET COL1 = :x WHERE COL2
> :y AND COL3 < :z };

Host Variables
The inputs and outputs of SQL statements are

passed through host variables. A host variable is a
Java variable, parameter or field that’s embedded in
an SQL statement and prefixed by a color. The stan-
dard JDBC types, such as Boolean, byte, short, int,
String, byte[], java.sql.Date, Integer, Double, etc.,
are valid host variable types in SQLJ. In addition,
Oracle’s SQLJ Translator supports Oracle7- and
Oracle8i-specific types, such as ROWID, CLOB and
BLOB, as well as Object and REF types.

Listing 1 consists of two SQL table definitions
and a Java method containing SQLJ clauses that
access those tables. It shows that SQLJ is quite sim-
ilar to the ANSI/ISO-Embedded SQL and allows
SQL statements to appear directly in program logic.
At program development time, static analysis can
detect errors in their SQL syntax, in their uses of
tables and other schema definitions, and in their
numbers and types of arguments and results.

Result Sets Returned by Queries
In an SQLJ program, a result set returned by a

multirow query is manipulated by means of an iter-
ator object, which iterates through the rows in the
result set. An iterator is an object of an iterator class,
which is a Java class defined by a declarative SQLJ
clause that can appear wherever a class definition
can appear. The clause defining a named iterator
class lists the Java names and types for columns in
a row of a result set. The following clause defines an
iterator class called AllStock:

#sql iterator AllStock (String part, int
quantity);

Figure 3: Using SQLJ in a two-tier server configuration uses the Oracle OCI driver.

SQLJ Application

SQLJ Runtime

Oracle

SQL

PL/SQL

SQLJ Application

SQLJ Runtime Net8

JDBC/OCI

Oracle

SQL

PL/SQL

HTML Page
Web Server

IC
X

FI
RE

W
AL

L

HTTP

OAS 4.0

SQLJ App
SQLJ Runtime

Web Browser

Oracle
Net8

JDB C/OCI

Figure 4: Using SQLJ in a three-tier architecture can be used to build “thin”
browser-based applications with SQLJ deployed on the mid-tier.

Oracle

SQL

PL/SQL

Web Server
SQLJ

Application

BROWSER

SQLJ Runtime Net8 (TCP/IP)

Thin JDBC

HTTP

Oracle

SQL

PL/SQL

Web Server

Figure 5: Using SQLJ with thin clients

Oracle8i
Java VM

Embedded SQLJ

PL/SQL

Oracle 8i

Java VM

Embedded SQLJ

SQL, PL/SQL

Embedded
JDBC Driver

Oracle8i
Java VM

Embedded SQLJ

PL/SQL

Oracle8i
Java VM

Embedded SQLJ

PL/SQL

Net8

IIOP

Oracle 8i

Java VM

Embedded SQLJ

SQL, PL/SQL

Embedded
JDBC Driver

Oracle8i
Java VM

Embedded SQLJ

PL/SQL

Net8

IIOP

Oracle 8i

Java VM

Embedded SQLJ

SQL, PL/SQL

Embedded
JDBC Driver

Figure 6: Using SQLJ for
database stored procedures

46 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

This clause implicitly defines the Java class All-
Stock with methods named part and quantity, of
types String and int, respectively. Those column-
accessor methods return the values of columns
from rows of a result set contained in an iterator of
type AllStock. The following SQLJ program frag-
ment defines a local variable of class AllStock, exe-
cutes a query to populate that variable with an iter-
ator object, calls the column-accessor methods of
the iterator and prints the column values. The code
for this can be found in Listing 2.

In addition, SQLJ provides support for defining
positioned iterators that use traditional FETCH…
INTO syntax to access query columns by position.

Database Connection Management
Listing 2 contains no explicit management of

database connections. Its SQL statements execute
on the default database connection, which is global
to the program. SQLJ programs may also manipu-
late multiple database connections. Users may
explicitly declare a connection-context class wher-
ever a Java class declaration is permitted.

Combining Static and Dynamic SQL –
SQLJ and JDBC

An SQLJ program may contain both SQLJ claus-
es and JDBC calls, for static and dynamic SQL,
respectively. The two paradigms interoperate at the
level of database connections and result sets/itera-
tors. For example, an SQLJ connection context can
be initialized with an existing JDBC connection:

java.sql.connection conn = …;
PartsDb pdb = new PartsDB(conn);

It’s also possible to extract a JDBC connection
object from an SQLJ connection context. Similar
conversions are possible between JDBC result sets
and structured SQLJ iterators. For example:

AllStock iter;
#sql iter = { SELECT … };
java.sqlj.ResultSet rs = iter.getResult-

Set();

Thus the dynamic SQL API for SQLJ is JDBC.

SQLJ Code Versus JDBC Code
For SQL statements with input arguments, SQLJ

clauses are often shorter than the equivalent dynam-
ic SQL (JDBC) calls. This is because SQLJ uses host
variables to pass arguments to SQL statements, while
JDBC requires a separate statement to bind each
argument and to retrieve each result. Contrast SQLJ
and JDBC program fragments for the same single-
row SELECT statement can be found in Listing 3.

Unlike dynamic SQL, SQLJ permits compile-
time checking of the SQL syntax:
• Regarding the type compatibility of the host vari-

ables with the SQL statements in which they are
used

• Pertaining to the correctness of the query itself,
with respect to the definition of tables, views,
stored procedures, etc., in the database schema.

Type- and schema-checking are also done
where column data is fetched from an iterator
object (by a FETCH statement or by column acces-
sor methods). This is because the class of the itera-
tor object defines the number and types of columns
in rows contained by that iterator.

Using SQL Objects in SQLJ
Starting with Oracle8 (version 8.0), Oracle intro-

duced support for abstract data types or objects.
These objects are similar in nature to the tradition-
al object-oriented classes or types. They have both
attributes and methods associated with them. In
Oracle8i, you can perform object manipulation
through static SQL statements in SQLJ programs.
Any kind of SQL data can be read and written by
Java in a fully user-customizable fashion. Users can
provide their own customized mapping from RAW
columns in SQL to serialized Java objects. The same
mechanism is then employed to create mappings
from SQL object types to Java classes. This is done
using the JPublisher tool, which assists in the gen-
eration of customized Java class definitions for
these types.

SQLJ supports Oracle8 types through an Ora-
cle-specific customization of the SQLJ runtime pro-
file. This customization is performed automatically
when you use the SQLJ translator provided with the
Oracle8i database. In this process, runtime calls to
standard JDBC entry points – such as getObject()
and setObject() – are replaced with calls to Oracle’s
JDBC API.

We expect the SQLJ specification to evolve in
the future and to encompass structured SQL3
types, such as those introduced in JDBC 2.0 and
supported preliminarily in the Oracle8i JDBC dri-
vers. Currently, support for Object Types can only
be provided as a vendor-specific extension.

Oracle provides the JPublisher tool for automat-
ing much of the effort in creating the corresponding
Java declarations for the Oracle8 object types and
collections such as Object Types, REFs and Collec-
tion Types.

Java Stored Procedures
Java stored procedures are a part of the SQLJ

standardization. Along with the embedded JDBC
driver, the Oracle8i server also has an embedded
SQLJ translator that allows application developers
to write applications that access persistent data
using SQLJ. Once you have written your Java pro-
gram and tested it, you need to load it into Oracle8i
– that is, onto the database’s Java VM – and resolve
all references. The database supports a variety of
different forms in which Java programs can be
loaded, including Java source text, standard Java
.class files or Java archives (.jar). Java source loaded
into the database is automatically compiled by the
Java bytecode compiler hosted in the database. The
Java programs loaded into the database are stored
as “library units” in a database schema similar to
how PL/SQL program units are stored in the data-
base. Java library units needed to execute a Java
program can be physically located in different data-
base schemas.

Using SQLJ in Enterprise JavaBeans
The Oracle8i RDBMS is tightly integrated with

the Oracle8i EJB server. This enables the Enterprise
JavaBeans running in the database to use JDBC or
SQLJ to access persistent data. Using Oracle8i ses-
sion Beans, users can explicitly persist the state of
their Bean and manage the Bean’s persistent state
via JDBC or SQLJ.

SQLJ in IDEs
SQLJ was designed so it could be embedded in

Java IDEs. Oracle provides an SDK that enables
tools and vendors to incorporate Oracle’s SQLJ
Translator into their Java tools. Oracle’s premier
Java Development tool, JDeveloper, was the first
such tool to support SQLJ. JDeveloper has com-
plete support for authoring and debugging SQLJ
programs.

Summary of SQLJ’s Benefits
SQLJ is a highly productive, open standard for

embedded SQL in Java. It’s supported by leading
database vendors such as Oracle, IBM, Sybase and
JavaSoft. SQLJ programs can be deployed in a num-
ber of different configurations, including two-tier
client/server applications and three-tier intranet and
extranet applications. They can write database stored
procedures, triggers and methods with Oracle8i. Ora-
cle’s SQLJ Translator conforms to the SQLJ standard
and provides support for a number of database fea-
tures specific to Oracle. Oracle has achieved tight

i n t e g r a t i o n
between SQLJ
support in Ora-
cle8i and JDevel-
oper for utmost
speed and effi-
ciency in gener-
ating bug-free
code. The com-
pany has also
given the user
flexibility and
choice from
within the IDE to
deploy the appli-
cation in a variety
of ways.

References
For further reading on the topics discussed

above, please visit the Oracle Java home page at
www.oracle.com/Java/

About the Author
This first look at SQLJ was written by Oracle’s SQLJ
Development Team. For more information contact
Moe Fardoost at MFARDOOS@us.oracle.com.

F
I

R
S

T

L
O

O
K

:
O

R
A

C
L

E
F

I
R

S
T

L

O
O

K
:

O
R

A
C

L
E

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

MFARDOOS@us.oracle.com

http://www.JavaDevelopersJournal.com 47Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 2 1999 •

Sales Vision
www.salesvision.com

48 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Do your Java applets and servlets need
to read and write files stored on a server
elsewhere in the network? If so, you need
NFS, a fast file-access protocol that is des-
tined to become a standard for file access
over local area networks (LANS) and the
Internet.

Much of your data may already be
stored on NFS servers, and now you can
use NFS technology to read or write remote
files directly from your Java program.

Naming Files on a Network and
Getting to Files with NFS

Let’s start at the beginning. The NFS pro-
tocol has been used for network file access
since the advent of LANs in the early 1980s.
Although the protocol is normally associat-
ed with Unix clients and servers, there are
implementations available for almost every
computing platform.

The NFS protocol is normally built into
the operating system on either the client or
server side. This leads to solid perfor-
mance and enables programs to get to
remote file systems as if they were local.

To access files on a network server, you
need to be able to name the files using a
network filename that will identify the file
and its server from any computer in the
network. We are already familiar with net-
work names in the form of a URL. The URL
Connection classes provide URL naming to
identify Web pages.

You don’t have to rewrite or recompile
programs to use NFS, plus NFS files are
commonly named through an automounter
service that creates network names such as
“/net/servername/dir/file.” There is also an
NFS URL, “nfs://servername/path.”

Getting to NFS from Java
The Java JDK provides good support for

Java as a network programming language.
It’s easy to connect to an HTTP server via
the URL Connection to read Web pages or
use the JDBC classes to access database
servers. RMI provides a wonderful frame-

work for network communication between
Java objects.

However, the java.io classes provide no
support for URL-style naming, for example,
to read a file using a FileInputStream:

InputStream in = new
FileInputStream(“D:\DATA\FILE”);

The path name for the file must use the
syntax for the underlying operating system.
The OS may provide its own form of remote
file access via CIFS or NFS protocols, but
there is no consistent naming model that a
user or programmer can rely upon. For
example, the file “D:\DATA\FILE” may
indeed be a remotefile since the “D” disk
may be assigned to an NFS mount, but there
is no reliable way to name files on other net-
work servers as we can do with URLs and
Web pages:

InputStream in = new
URLConnection(“http://server/page”).get-
InputStream();

Furthermore, the JDK provides no sup-
port for remote file access. When you write
a Java program that reads or writes a file,
you will use the classes in java.io. With

these classes you can read and write files
either sequentially or randomly. You can
also list directories and create, delete and
rename files. The java.io classes work well
until you need access to files across the
network – java.io provides no support for
network file access.

The NFS team at Sun Microsystems cre-
ated a set of classes that enhance thej
ava.io classes to allow URL naming. The
XFile classes are almost identical to the
java.io classes. They take the same argu-
ments, return the same results and throw
the same exceptions. Only the class names
are different: an “X” is prepended to each
class name. In addition to taking the same
“native” file names asjava.io, the XFile
classes will handle URL names. For
instance, to test if a file exists:

XFile xf = new
XFile(“nfs://server/a/b/c.txt”);
if (xf.exists())
System.out.println(“file exists”);

Listing 1 demonstrates a simple pro-
gram that uses the XFile classes to copy
afile. It’s identical to a java.io equivalent
except for the “X” in front of the class
name. The XFile classes provide this file
copy program with a unique capability:
rather than copy a file from one place to
another on a local disk, the source and des-
tination files can be named with URLs. For
instance:

java xcopy nfs://server/a/b/c /tmp/x,

will copy a file from a remote NFS server
to local storage, and

java xcopy nfs://server1/a/b/c nfs://serv-
er2/a/b/c

will copy a file from one NFS server to
another. The XFile classes support an XFile
Accessor interface that allows handlers to
be written for any URL type. The NFS class-
es are just one type of handler for URLs
that have the scheme name, “nfs:”. Han-
dlers can be written for other protocols,
such as HTTP, FTP or CIFS. Handlers can
also support other file system types. For
instance, a “zip:” URL handler could be
written that provides access to files within
a zip archive.

Listing 2 is an example of an HTTP han-
dler that implements the XFile Accessor

ANYTHING NEW UNDER THE SUN

Table 1: The XFile classes provide a Java
application with easy access to files through
plug-in handlers identified by a URL scheme.

Java Technology for NFS:
Using an Internet File Access Protocol

by Brent Callaghan

Java Application

XFile Classes

URL Handlers

file: nfs: http: zip:

49VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

interface for XFile handlers. This handler
provides access to Web pages as if they
were files. Due to the limitations of the
HTTP protocol, the handler cannot pro-
vide directory listings or random access to
files. HTTP servers don’t normally allow
clients to create files or directories with-
out the assistance of a customized CGI
script.

Listing 3 is an enhanced copy program
that will copy an entire tree of files from
source to destination. Since the program
needs to list directories, it can be used with
local files and NFS, but not HTTP or FTP.

Getting Java NFS
You can download a zip file containing

the XFile package and a handler for
NFSURLs from www.sun.com/webnfs. The
download contains documentation,
javadocs for the classes and the classes
themselves. The NFS handler needs only 70
KB of bytecode, yet it implements a capa-
ble NFS client. The classes achieve good
read and write performance through the
use of Java threads to implement read-
ahead and write-behind techniques. In
addition, the handler caches file attributes,
directory listings and file data. This NFS
client will interoperate with many different
NFS server configurations: TCP or UDP
connection, NFSversions 2.0 or 3.0 and the
use of fast WebNFS connection or the
MOUNTprotocol.

The XFile classes provide equivalent
java.io access to a variety of file system
types using URL naming. The bundled NFS
handler provides convenient, run-any-
where access to files on your NFS servers,
which are already widely deployed on
TCP/IP intranets.

The NFS protocol is destined to become
a standard for file access on the Internet.
The WebNFS extensions to the NFS proto-
col have already made Internet NFSservers
accessible from Web browsers and through
corporate firewalls (see www.sun.com/-
webnfs).

About the Author
Brent has been with Sun for 12 years in the
Solaris NetworkingTechnology Group working mostly
on NFS. He participated in the development of the
NFS version 3.0 protocol and the design and
implementation of the Java NFS classes. He’s
currently co-chair of the NFS version 4.0 working
group in the IETF. He can be reached at
jeff.brainard@eng.sun.com.

jeff.brainard@eng.sun.com

JDJ Special CD in South Africa?

Dear JDJ,
I am a software developer based in South Africa.

I am keen on Java development and I purchased a
copy of Inprise JBuilder in September last year. I was
walking into the local news agent (CNA - Central
News Agency) last week and l saw your special issue
on JBuilder. It looked great and I took it off the rack.
I was impressed by the FREE CD offer and went to
customer information where CDs are normally col-
lected, but was disappointed that no CD was avail-
able. I have since went to 3 branches of the CNA and
at the last one spoke to the manager in charge of
subscriptions. Apparently we (that is, South Africa)
do not receive the CDs with all publications. Can you
explain the policy of why the CD is not made avail-
able to South African readers?

Do I need to contact Inprise in this regard? If this
is not the case how do I go about obtaining the CD?

I have made use of your offer to subscribe elec-
tronically. Thank you very much for what looks like a
great publication.

Johan van Niekerk
jvniekerk@acenet.co.za

Dear Johan,
As with any issue of Java Developer’s Journal,

when there’s an announcement on the cover indi-
cating that the particular issue is bundled with a CD,
you are entitled to receive the magazine with the
CD. The issue which you are referring to contained
an Inprise JBuilder CD and was shipped to all news-
stands with this CD included.

There are two possible reasons why you could
not find the CD in the magazine. They may have
been ripped from the package and taken by a visi-
tor to the newsstand or bookstore. That’s a com-
mon scenario both here in the United States and on
newsstands around the world. The JBuilder CD was

only available in that special issue of JDJ and made
it especially sought after.

Our spot checks of the newsstands proved that
in most cases, this was the cause of why the CDs
that were bundled with JDJ were missing. (See
above photo. This particular
bookstore in Milan, Italy received
20 copies of our JBuilder special
issue. When we spot-checked
their racks in mid December, we
found that 16 copies were sold,
four copies were still available and three copies of
the four were torn open and the CDs were gone.)

Since you mentioned that none of the CNA
stores had the CDs, this might be because of either
the country's import regulations, or the CNA's poli-
cy of removing the CDs from the magazine and dis-
bursing them via their cash register.

Either way, a new CD was mailed to you and
you should have received it by the time you are
reading this.

Mitchell Low
JDJ Online Customer Service

Stop Spamming Me!

Dear JDJ,
With the start of the new year, I have been

receiving e-mail notices from JDJ. I apologize for
responding to a few of them without actually read-
ing your entire e-mail message. I thought they were
spam letters until I read the e-mail I received this
morning, which delivered me a copy of JDJ’s Febru-
ary Digital Edition. Is it possible for you to send me
the previous four e-mails I received and trashed
without reading them? I don't want to miss one sin-
gle issue and you guys are doing a real terrific job in
providing the best Java news and information avail-
able out there.

John Hamilton
Schaumburg, IL

john.hamilton@iname.com

Dear John,
We redirected the e-mail that you missed in Jan-

uary back to you. Thank you for your support and
kind words.

-The Editors

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

JDJ’s JBuilder Focus Issue on a
newsstand in Milan, Italy. Not all of
the copies have CDs in them.

• VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal50 http://www.JavaDevelopersJournal.com

JDJ We
www.JavaDevelo

51VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

eb Site
persJournal.com

52 • VOLUME: 4 Issue: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

AQ

AQ

AQ

AQAQ

AQ AQ

AQ

michael smith
senior systems engineer
BEA WebXpress Division

JDJ: Of the products and services BEA offers, above and
beyond those of your competitors, what would be the most
appealing to a consumer?
Smith: We talk a lot about that, and I think what we have
at BEA is a philosophy: when you buy software, a tool or
especially middleware – which is what BEA focuses on –
you’re really buying a relationship. We feel we deliver what
we promise, support what we promise and carry you all the
way through. So in that regard, we think we offer people a
very comprehensive set of middleware platforms that’s unri-
valed in the industry. Couple that with our focus on the Java
technologies, as well as with WebLogic being the first server
with an EJB deployment, and we feel end to end that we

operate a relationship. And we feel that it’s those relation-
ships, every bit as much as the technology, that make us an
important company.

JDJ: What do you see for your company and your prod-
ucts in the immediate future?
Smith: I think BEA is focusing on delivering the message
for what their solution offers. I think we’re working on a lot
of neat things that we really haven’t evangelized enough in
the marketplace. So I really think we’re focusing on telling
our story, telling our relationships. And the big thing right
now, obviously, is that the WebXpress division has to get the
WebLogic 4.0 product out the door. The second phase of
that is the implementation of a couple of the new Java
enterprise APIs. JMS, the Java Messaging System, comes to
mind. The other thing that’s really important to the BEA
product line is the integration of all our products. We want
to make sure that our whole product line speaks together

very well, and that developers have tools that work with all
these things. We’re working really close with Symantec right
now and we’re getting an integrated version of Café that
allows developers to not only build the GUI but actually to
build the client-side code as well, and deploy it all within the
same developer infrastructure.

JDJ: What kind of audience are you targeting for these
products?
Smith: I think we’re definitely targeting the enterprise –
people wanting to do large-scale deployments, and
technologies using the Internet, Java and middleware
platforms.

About the Author
Chad Sitler, host of SYS-CON Radio, is SYS-CON
Interactive’s senior Web designer. Chad can be reached
at chad@sys-con.com.

michael gardner
director of development for Java products
joe nicholson
director of marketing enterprise tools
Inprise Corporation

JDJ: We know that Inprise has focused largely on Java with
JBuilder. What else are you focusing on?
Nicholson: We’re very focused on the business aspects
of what companies are doing, and IT has really become a
focus for how companies could be more competitive. You
know, Java has a way of fundamentally changing the way
people do IT, and so we’re really looking at Java as the key
component of the Inprise strategy, not only in the JBuilder
IDE tool but also across all our products. Java is key to
Inprise’s long-term strategy because we believe in the fun-
damental business aspects and advantages of Java. We
know that the ability to take Java code and put it on any
platform throughout the enterprise is very important to
companies.

JDJ: Could you tell us a little about the overall enterprise
Java strategy at Inprise?
Nicholson: Sure. We’re using Java as a fundamental devel-
opment environment for an entire suite of tools. You know,
part of what Inprise is doing is addressing the entire work-
flow process in applications, from development to deploy-
ment to integration and management, and we’re using Java
as a fundamental language and platform to develop tools
across that entire spectrum.

JDJ: We’ve got a lot of ven-
dors here at the Expo. What
sets Inprise apart?
Nicholson: That’s a good
question. We take a funda-
mentally different approach.
Our focus is on the entire
development spectrum and
being able to address what
the customer needs, from
development through
deployment, through the
integration with Legacy
applications, on through to
the actual live management

of the application. And we’re doing that in ways that are
very important to customers. For one, we’re completely
standard-neutral, that is, we support every major standard in
the marketplace. We’re also platform-neutral in that we have
Windows environments supporting common CORBA. We
have Java environments supporting CORBA and we
also run on a variety of UNIX machines. What we’re about is
what the customer needs, not necessarily what our particu-
lar IT agenda happens to be.
Gardner: We have a deep, deep, deep understanding, and
have for years, of up-storing the computing of languages
and [with the acquisition of Visigenic that was completed in
early 1998] with distributed object computing. And it’s the
depth of experience and understanding of Java and the role
Java can play in object-oriented computing that our person-
nel has that I think is very unique.
Nicholson: We’re approaching things more from a busi-
ness perspective, rather than simply from an IT perspective.
We have a rich history in simplifying difficult development
tasks, whether it was client/server development with Win-
dows or Java development with JBuilder. We’re going to do
the same thing with the Inprise Application Server. This
application server environment radically simplifies the often
difficult task of writing three-tier applications. When you
hear from customers, what they want to know is, “How can
I get my application to market quicker?” “How can I make
sure it’s robust?” and “How can I make sure it’s scalable?”
and we’re giving them the tools to do that.

JDJ: What do you have in the works? What’s in the future
for Inprise?

Nicholson: Well, we have lots of things in the works, such as
continuing to enhance the integration of our IDEs with the
application server we announced [in early December 1998]. In
addition to having the Java platform supporting it, we’ll also be
supporting it on both our C++ and our Delphi tools. We have
a variety of initiatives going on in Java for future releases of
JBuilder. And again, if you look at what we are from a compa-
ny perspective and a company strategy perspective, as applica-
tion development continues to be more and more complicat-
ed, we‘re trying to make it all simpler so companies can
extract the business benefits out of both Java and IT.

JDJ: What do you suggest for those companies as far as
going about finding these solutions?
Nicholson: Well, I think probably the first thing is to get
started today. In the case of our tools, you can begin work-
ing on JBuilder today and be compatible with the code that
JBuilder ultimately produces because it’s 100% Pure Java.
So regardless of where companies want to go in the future,
you know that the code you’re producing in JBuilder today
is 100% Pure Java and you can get all the benefits of being
able to move that code throughout your organization, both
on the client and on the server.
Gardner: But I also think that people have been in evalua-
tion mode about Java. We’ve talked to customers who
bought JBuilder or another proven tool and who have writ-
ten some experimental applications but they haven’t really
moved – certainly some customers have, but in general I’d
say that people have been learning about it but they haven’t
really committed to actually using it yet. I think with the
release of Java 2 it’s now ready, and so part of getting start-
ed now, I think, is actually realizing that Java is here and it’s
real and there’s no reason you can’t bet on it. And I think
that’s an aspect of what we’re going to start seeing now
with the release of Java 2.
Nicholson: The other aspect is that we’re also now seeing
the early adopters of Java technology really starting to reap
the benefits of what Java can do both cross-platform and
around their organizations. And I think over the next few
months as the Java 2 platform really starts to be implement-
ed, we’re going to see some real success stories in terms of
quantifiable benefits. We’re basically committed to Java across
our entire company because we see the business benefits
and the return on investment that we just haven’t seen with
other operating and platform systems in the past. So I think
it’s a pretty exciting time to be in the marketplace.

SYS-CON RADIOSYS-CON RADIOSYS-CON RADIO S

YS
-CON

R
A

D
IO

w
w

w
.s

ys-con.com

INTERVIEW
Broadcast live at the Java Business Expo in the Jacob Javits Center in New York City, SYS-CON Radio’s Chad
Sitler spoke with Michael Gardner and Joe Nicholson of Inprise, and Michael Smith of BEA WebXpress

53VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Enterprise Solutions
Conference

www.jumpstart99.com

54 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

As the popularity of Java increases,
many information services departments
are embracing Java as the solution to their
cross-platform challenges. As this trend
progresses, many developers will be faced
with the challenge of migrating their Java
servers from UNIX to an NT boot-time envi-
ronment. Administrators tend to take the
attitude that since Java is a cross-platform
language, this migration should be effort-
less. Unfortunately, this isn’t the case. The
thread management of child threads in the
current Java Virtual Machine from
Microsoft can cause problems for those
developers migrating from a UNIX environ-
ment. This article explores one workaround
for the thread management and garbage
collection differences between the Sun and
Microsoft JVMs. Microsoft recently agreed
to implement a court decision to make their
JVM ISO-compliant. It remains to be seen
whether this will affect the behavior of
Microsoft’s proprietary Service class.

Considerable trial and error is associat-
ed with the migration of Java server classes
to the NT environment. In the UNIX operat-
ing system it’s possible simply to fork off a
Java process in a script that’s run at boot
time. (The particular script, and the associ-
ated operating system messages that need
to be caught, depends on the flavor of UNIX
involved.) Under the NT operating system
no fork is available, so to start a process at
boot time, an NT service must be created
and registered with the service’s control
panel. The problem inherent in this
approach is that the NT OS doesn’t allow
fine control over the child process once it’s
been started. If a Java class utilizes threads,
you have to override the stop method of
the extended Service class to isolate and
stop your threads manually. This task is
made more complex because there’s no
definitive way to isolate your threads from
the operating system threads other than
their placement on the stack. Consequent-
ly, other processes started after your serv-
er may interfere with the stopping of your
service. Recent versions of the Microsoft
JVM have addressed this problem, but to
ensure proper garbage collection, manual

thread management within services is still
necessary.

To create an NT service, you have to cre-
ate a Java class file that extends the
coms.ms.service.Service class provided by
Microsoft in its Software Developers Kit for
Java. This class is located in C:\SDK\NTSer-
vice\service.zip in version 1.02 and C:\SDK-
Java.202\Bin\jntsvc\service.zip in version
2.02 of the SDK files installed by the
Microsoft SDK-Java installer. Do not attempt
to unzip this file and examine the Java files.
All the documentation you should need to

extend the Service class is contained in the
SDK-Java documents and in this article. The
SDK-Java is available on Microsoft’s Web
site at www.microsoft.com\java\. This exe-
cutable should be downloaded and
installed on the system that will run the
Java service. Be sure to install the Internet
Explorer Java support as part of the SDK
installation because the support actually
installs the Java Virtual Machine. The JVM
is necessary because the NT operating sys-
tem won’t try to access the normal Java
executable located on the path; instead, it
will invoke the jview executable resident
within the Microsoft SDK. Microsoft’s pro-
prietary compiler and JVM contain custom

hooks into the OS that are not part of the
ISO standard. It remains to be seen whether
these hooks will be deprecated as part of
the move toward ISO compliance by
Microsoft. The services control panel now
defaults to the Microsoft proprietary JVM,
called jview.

The Service class of the coms.ms.ser-
vice package provides methods to allow the
NT OS to start, stop and pause a service.
However, the JVM doesn’t allow the NT ser-
vices driver to access child threads of the
parent class automatically. The ramifica-
tions of this are that if you create a wrapper
class that extends service, you have to
manually instantiate, start, pause and stop
any child threads from within the wrapper
class itself. Any child threads instantiated
or started from within the Java class being
wrappered won’t be accessible from within
the NT services framework. Once a child
thread has been instantiated and started,
the NT OS no longer knows that the child
thread is grouped with its parent. Any
attempts to stop or pause a service that
contains child threads without taking this
into consideration will result in the OS’s
returning an error stating that it is unable
to stop the service. To avoid this, the wrap-
per class in its stop method has to isolate
and stop any child threads. Note that this is
true for wrapper classes, while classes that
directly extend the coms.ms.service.Ser-
vice class will stop, usually without error, in
version 2.02 and above. For previous ver-
sions, and to ensure proper functionality if
wrappering classes are involved, manual
thread grouping should still be utilized.

Listing 1 is an example of how you might
extend the coms.ms.service.Service class to
create a wrapper class that can be registered
as an NT service, and will call the public sta-
tic void main(String[] args) method of your
Java class. To use this example code, replace
YOURSERVICE with the class name of the
application you wish to wrapper.

Once your Java file has been created, it
needs to be compiled to bytecode. Once
you have a Linking.class, move the Link-
ing.class file to the C:\SDK-Java\NTSer-
vice\ or C:\SDK-Java.202\Bin\jntsvc\
directory that was created when you ran
the Microsoft SDK-Java executable. You
now have a wrapper class that can be reg-
istered as an NT service.

Migrating your Java server from UNIX
to an NT boot-time environment

by Jim Barnebee

JavaNT Services

TECHNIQUES IN JAVA

“Microsoft

recently agreed

to implement a

court decision to

make their JVM

ISO-compliant.”

55VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Pervasive Software
www.info@pervasive.com

56 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

To ensure that your target system is con-
figured properly so you can register and
use the Java service class you’ve created,
follow the steps below.
1. Make sure there is a local (on hard drive)

copy of any classes used or imported by
the YOURSERVICE class; NT services
aren’t started in any particular order, and
the networking connections may or may
not be functional when the JVM attempts
to start the Linking.class.

2. Place the service.zip file and the path to
the tree of classes imported by YOURSELF
in the CLASSPATH environmental variable
in the system environment settings. (This
file is located in C:\SDK\NTService\ser-
vice.zip in version 1.02 and in C:\SDK-
Java. 202\Bin\jntsvc\service.zip in ver-
sion 2.02 of the SDK.) These settings can
be assessed by opening the Control Pan-
els Dialog from the Start menu and dou-
ble-clicking on the System icon, which
will bring up the system parameters.
Clicking on the Environment Tab will
access both the systemwide and the indi-
vidual user parameters. You’ll need to
modify the system CLASSPATH parame-
ter.

3. (If you’re using version 2.02 or higher of
the SDK, you can skip this step as the
jntsvc registration program will modify
the registry for your service.) The last
step is to modify the JVM’s CLASSPATH
variable, because the standard Java
CLASSPATH environmental variable isn’t
recognized by the JVM. The JVM CLASS-
PATH variable is explicitly defined within
the JVM’s set of environmental variables.
Therefore it’s necessary to directly modi-
fy the CLASSPATH variable that the JVM
places in the system registry as follows:
• Access the MS-DOS Command Prompt

from the Start menu. In the Command
Prompt window type regedit <return> –
this brings up the system registry.

• Open the folder HKey_Local_Machine
by clicking on the plus (+) sign next to
the folder. Open the subfolder software
and the JVM folder in the same manner.
The path in the bottom left-hand corner
of the System Registry Editor window
should now read:

My Computer\HKey_Local_Machine\Software
\Microsoft\JavaVM

Now open the CLASSPATH environmen-
tal variable for editing by double-clicking
on the small book icon directly left of the
word CLASSPATH.
• Then remove the period at the end of the

current entry and add to the current path
the path to the class tree that YOURSER-
VICE imports. Make sure that C:\SDK-
Java\NTService\service.zip and C:\SDK-

Java\NTService\ are included in the
CLASSPATH. Path additions in the NT OS
are separated by a ;. Remove the period
at the end of the CLASSPATH before mak-
ing additions, and don’t add any unnec-
essary punctuation marks!

• Close the System Registry Editor.

The final step in the migration process is
to register the service class with the NT
Services Control Panel.

Registering the Service
For version 1.02 (this is also explained

in the SDK-Java documentation):
• In the C:\SDK-Java\NTService\i386\

directory run the svcsetup program with
the command line svcsetup ServiceName
Linking -classpath C:\SDK- Java\NTSer-
vice\.

• From the Start menu open the control
panels, then the Services Control Panel.

• Select the ServiceName Service and click
on the STARTUP button; select automat-
ic, and allow interaction with the desk-
top.

• Select HWprofiles, and select enable.
• Reboot your computer.

For version 2.02:
• In the C:\SDK-2.02\Bin\jntsvc\ directory

run the jntsvc program with the com-
mand line jntsvc /out:ServiceName.exe/
main:ServiceName ServiceName.class.

• Run ServiceName.exe\install to register
the Service.

• Further documentation on use of the
jntsvc should be available at C:\SDK-
Java.202\Docs\SDKJDoc\def_cerv.htm
provided that you installed the SDK to
the default root.

• From the Start menu open the control
panels, then the Services Control Panel.

• Select the ServiceName Service and click
on the STARTUP button; select automatic,
and allow interaction with the desktop.

• Select HWprofiles, and select enable.
• Reboot your computer.

Testing and Evaluation
There are two ways to see whether

these procedures have been successful.
The first and easiest is to open the Control
Panel again and see if the service has start-
ed. If so, you’ve been successful. If not, an
error has occurred. You can bring up the
Event Viewer for the NT OS by looking
under the Start menu’s Administrative
Tools (common) area and selecting Event
Viewer. Set the Events to the Application
log, and refresh the view. This allows you to
examine the debug lines from the linking
class so you can debug your classes or link-
ing structures. Note: If the Event Viewer
Application log says it can’t find your class,
make sure both CLASSPATH variables are
set to include the paths to your linking
class and all classes you wish to import.

Many companies are pursuing Java in an
attempt to reduce their operating budgets
and increase their efficiency. Java is
promising cross-platform compatibility.
Most of the problems associated with the
migration of Java can be attributed to its
youth as a language. While developers feel
joy about a “write once, run anywhere” abil-
ity, it’s short-lived when the virtual
machines don’t conform to the same speci-
fications. While Sun has made – and contin-
ues to pursue – true cross-platform com-
patibility among all JVMs, not all have
achieved a workable level of compliance.
As a result of litigation, Microsoft is migrat-
ing its JVM into compliance with the ISO
standard. It remains to be seen, however,
whether this migration will affect the nec-
essarily proprietary NT Service installation
classes. These differences require develop-
ers and IT staff who wish to import their
code to Windows to be aware that the
“write once, run anywhere” promise of Java
is not always applicable in a Windows envi-
ronment. Until all Java Virtual Machines
behave identically, there will continue to be
issues of migration for developers and IS
departments to face.

About the Author
Jim Barnebee, a registered Sun developer and a
Microsoft developer, has been an alpha and beta
tester for many Java development environments. He
has a BS in information systems science, and has
been developing software professionally since 1986.
Jim can be reached at philosopher@stones.com.

philosopher@stones.com

“Many companies
are pursuing Java

in an attempt
to reduce their

operating budgets
and increase

their efficiency.”

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

57VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Spring Internet
World 99

www.internet.com

One of the most common development
requirements is the ability to store and mod-
ify configuration parameters. Java provides a
Properties class that’s useful for storing
application settings. To make these proper-
ties easy for users to modify, programmers
typically build a dialog interface that exposes
each of the various fields and values individ-
ually. But this can be complicated, and often
leads to a system that requires time-consum-
ing code changes when variables are added
or removed.

This month, we’ll try to alleviate some of
these problems with the JConfigure widget.
This component automates most of the work
you’d normally have to do and uses an open
architecture to make it as flexible as possible.
Our widget presents users with an explorer-
style interface, allowing them to edit proper-
ty fields based on a hiearchy of information.
Figure 1 shows JConfigure in action.

By default, the fields are presented using
JTextField editors, but a template mecha-
nism allows you to define custom field edi-
tors by implementing a simple PropertyField
interface. JConfigure is entirely data-driven
and adapts to handle new fields or property
files without typically requiring any code
changes. The only code you should need to
write will be for custom edit fields.

Application settings come in many forms.
Under Windows, for example, they
are commonly held in .ini files or in
the Windows registry. Under UNIX
you’ll often find them stored as envi-
ronment variables or .conf files.
With Java programs, the standard
choice is a .properties file. Java
Properties use a dot-delimited path
convention that supports a hierar-
chical name space which we can
automatically parse into a tree struc-
ture.

User interface designs have start-
ed moving toward an explorer-style
view for property settings. The older
– and still perfectly valid – style was
to use tabbed panels. This is still
one of the best ways to present set-

tings to the user, but it may become cluttered
if you have too many categories. Explorer-
style tree navigation keeps the interface well
organized, supporting easy viewing and edit-
ing of almost any number of categories and
settings.

Tree Modeling
Each of the entries in a properties file can

represent a path with each path element
delimited by a dot (period) character. We
consider the last element to be the field
name, so the path we’re interested in con-
tains all but that last element. We use the
JTree control to display the resulting hierar-
chy. Listing 1 shows ConfigureTree, which
merely subclasses JTree, making it easier to
set the default size and model.

The ConfigureTreeModel class in Listing 2
shows how we extend the JFC Default-
TreeModel and add the ability to set and
retrieve entire paths. This makes it easier to
manage dot-delimited paths rather than the
individual elements. The constructor sets
“properties” as the root node. The addPath
method adds child nodes by traversing exist-
ing nodes and appending new ones to the
child list when appropriate. We use the
StringTokenizer class to split the path into
pieces and do each lookup, adding any nec-
essary tree nodes as we traverse the path.

The ConfigureTreeModel also implements
the getPath method, which returns a linear
list of paths in the same order they’re stored
in the tree model. We do this by traversing
the nodes, accumulating path segments
along the way. The paths are returned in the
form of a vector. We always maintain order
when loading and saving property files so the
presentation can be controlled more effec-
tively.

Listing 3 shows the ConfigureTreeNode
class. These are the nodes we use in the Con-
figureModel to store path elements. We
extend the DefaultMutableTreeNode class
and add the ability to get the node name and
return a child node by name. The getName
method casts the user object back into a
string to save time when we need to access
it. The getChild method returns a Configure-
TreeNode by taking the name argument and
looking at each child node until a match is
found.

View Layout
Figure 2 shows the way panels and layout

managers are brought together to work our
magic. We’ve already talked about the tree,
model and node classes. Listing 4 shows the
TitleBar class, which is nothing more than an
extended JLabel class with a few presets to
control the font, spacing and colors. We use
this class to display the current panel name,
making the output context easier to under-
stand.

The DeckLayout manager was covered in
an earlier article, so I’ll keep this brief. The

class essentially replicates the code
from the Java CardLayout manager,
updating deprecated calls to their
modern equivalents and disabling
or enabling child components as
required. This fixes a few shortcom-
ings in the CardLayout manager
which inappropriately allows focus
traversal through invisible compo-
nents. The net effect is much clean-
er and requires no effort on the pro-
grammer’s part in order to manage
proper focus traversal.
We develop a new layout manager

named FieldLayout to handle
label/field pairing. You may find this
layout manager useful in many of
your own applications, since numer-Figure 1: JConfigure at work

Java DEVELOPER’S Journal58 • VOLUME: 4 ISSUE: 2 1999 http://www.JavaDevelopersJournal.com

The JConfigure Widget
This flexible, time-saving widget can be a
blessing to users and programmers alike

by Claude Duguay

59VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

SIGS Conferences
www.sigs.com

ous programs have to deal with the same
issues. FieldLayout expects prompt and edi-
tor component pairs, though you can use it
with any valid component. We extend the
AbstractLayout class (which was presented
in earlier articles) cutting down on the
amount of coding we need to do.

The FieldLayout code, presented in List-
ing 5, implements the minimumLayoutSize,
preferredLayoutSize and layoutComponent
methods. The first two merely calculate the
required size, while layoutComponent does
the actual layout work. In each case we cal-
culate the maximum label width and consid-
er the two-column format of our display to be
directed by that value.

Accounting for the margin and the hori-
zontal gap, we resize each component to the
maximum label width in the left column and
the remaining available width in the right col-
umn. The vertical size, accounting for the
margin and vertical gap, is the maximum
height of the two components on a given line.
We also account for situations where an odd
number of components are entered and no
right component exists for a given row.

While the FieldLayout manager is com-
pletely generic (making no assumptions
about the components displayed), the Field-
Panel provides specific methods for present-
ing field information. Listing 6 shows the
FieldPanel code. We set the layout manager
to FieldLayout with vertical and horizontal
gaps, and add an EmptyBorder to help with
spacing.

The FieldPanel implements two addField
methods. Each one creates a JLabel control
with the field name provided in the first argu-
ment. The second argument is either a string
(in which case we create a JTextField ele-
ment), or a Component argument, which per-
mits additional flexibility. We use this varia-
tion to insert custom editors.

FieldPanel implements two additional
methods to retrieve information when we
need to save the data. The getFieldNames
method returns a string array with each of
the field names. The getFieldValues returns a
string array with the field values. The two
arrays are guaranteed to be returned in the
same order they were created so we can
reconstruct the properties file when it’s time
to save it.

Custom Editors
To maximize the flexibility of our design,

we support customizable edit fields. Listing 7
shows the PropertyField interface each must
implement. The LayoutPanel is smart
enough to recognize PropetyField compo-
nents and uses their getValue method to
retrieve values. The JConfigure class handles
instantiation. The PropertyField interface
must be implemented by a Component class

that exposes the setValue and getValue meth-
ods, along with a zero-argument constructor.

We implement the obvious default Prop-
ertyField class in Listing 8. The Property-
TextField class extends JTextField and sim-
ply adds the setValue and getValue methods
by calling the setText and getText methods in
JTextField. Listing 9 shows the Property-
BooleanField class, which extends JCom-
boBox and sets the values to true or false.
The setValue and getValue methods use the
JComboBox setSelectedItem and getSelecte-

dItem to expose the required interface. Fig-
ure 3 shows what these editors look like.

The two previous classes show how easy
it is to implement PropertyField classes. List-
ing 10 shows another – PropertyRectangle-
Field – to demonstrate how you can create
complex field editors with relative ease. The
PropertyRectangleField class uses four JLa-
bel and four JTextField components
arranged in a 4x2 GridLayout on a JPanel.
The setValue and getValue methods, imple-
menting the PropertyField interface, set the

Figure 3: Custom Boolean fields

TitleBar

Configure
Tree

J ScrollPane DeckLayout J ScrollPane

FieldLayoutFieldPanel

JLabel PropertyField

JLabel PropertyField

JLabel PropertyField

Figure 2: The JConfigure layout

http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal60 • VOLUME: 4 ISSUE: 2 1999

61VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ParaSoft Corp.
www.parasoft.com/jtest

JTextField values based on the parsed
comma-delimited property string and return
an appropriate string based on the values in
those text fields. Figure 4 shows a trio of rec-
tangle fields in JConfigure.

The JConfigure Class
The JConfigure class ties all the previous-

ly mentioned classes together. The code is
presented in Listing 11. The constructor cre-
ates the components we’ll need to display
our tree navigator, title bar and field panels.
The properties file name is the only argu-
ment you need to provide. JConfigure will
automatically load and parse the properties
and display the interface for you. If a file with
the same prefix and a .template extension is
found, it’ll also be read automatically.

The constructor code sets the leaf node
icon for the tree and creates a BevelBorder to
place around the title bar. The colors are
explicitly set to keep the border thin, setting
the inner part of the two-pixel border to the
same color as the background. We set the
panel border to an EmptyBorder with five
pixels all the way around. We add the Config-
ureTree to the WEST and a JPanel in the CEN-
TER part of the panel’s BorderLayout. The
CENTER panel also adds a TitleBar to the
NORTH and a new JPanel with the DeckLay-
out in its own center. Figure 2 shows how the
internal components are organized.

We call on a pair of methods to read the
template and property files. The readTem-
plate method merely opens a stream and
uses the Properties object load method to
read the content into a Hashtable before
closing the stream. The readProperties
method is more complicated because we
want to preserve the order of elements in our
properties file. The readProperties method
expects a reference to the ConfigureTree
components and the file name to be read.

Like readTemplate, readProperties dele-
gates much of its work to another method.
We open a BufferedReader stream and read
each line independently before closing the
file. Each line is parsed by the processLine
method and the data is inserted in appropri-
ate locations. We use the ConfigureTree
addPath method to keep the tree model up to
date and use an addField method to deal
with each path tail and associated value.

Because we have multiple cards in the
DeckLayout panel, we keep track of the path
each one is associated with by using a
Hashtable, assigned to the deck member vari-
able. If a panel already exists for a given path,
we simply add a field – otherwise we add
another FieldPanel to the deck. As each field
is processed, we check to see if there’s a tem-
plate entry associated with it. After creating a
field prompt, we set the PropertyField. This is
based on either the template entry we found

or the default PropertyTextField. This late
binding is accomplished at runtime, using the
Class.forName(name).newInstance() combi-
nation.

The JConfigure class exposes a pair of save
methods. The first assumes you want to save
the file to the same file name used at con-
struction time. For integrity reasons, we first
rename the existing properties file, changing
the extension to .previous. This gives us a roll-
back position if something goes wrong. The
alternative save method lets you specify the
output file name and doesn’t provide this
extra safety feature (assuming the original is
still available for recovery purposes).

The output file content is labeled with a
JConfigure statement that includes the cur-
rent date and time, formatted by the Date-
Format class. We then walk the tree model
paths after asking for them with the Config-
ureTree getPath method. This is guaran-
teed to be in the right order but may
include subpaths that have no associated
FieldPanel, so we check each one and then
walk the elements in each FieldPanel using
the getFieldNames and getFieldValues
methods. In each case, we rebuild the full
path and write it to the BufferedWriter until
we run out of properties.

To switch between views, the JConfigure
panel is registered as a TreeSelectionListen-
er. To support this, the valueChanged
method responds to user selections by call-
ing getSelectionPath and activating any exist-
ing FieldPanel that’s stored in the deck
Hashtable under that path. If no path exists,
we leave the existing FieldPanel where it is.
We use a final method called treePath to
rebuild the path from the TreePath structure

provided by the JFC.
Listing 12 shows the JConfigureTest class,

which wraps a JFrame around the JConfigure
component and adds an OK and a Cancel
button. If the user clicks the OK button, we
call the JConfigure save method. If the user
clicks Cancel, we ignore the changes and
save nothing. This is representative of the
way you’d typically use JConfigure. Since
JConfigure extends the JPanel class, it can
easily be used in any window or dialog box.

Summary
The JConfigure widget provides consider-

able flexibility when it comes to manipulating
property files. These files often represent the
persistent states and customized settings
implemented by your software. Having the
ability to present an adaptive generic inter-
face to the user is attractive. The user can
automatically navigate and edit properties
without a big investment on your part. Fur-
thermore, the model is extensible. You can
provide custom editors for any field and sup-
port constraints or field validation through a
very simple interface. Enjoy.

About the Author
Claude Duguay has been programming since 1980.
In 1988 he founded LogiCraft Corporation, and he
currently leads the development team at Atrieva
Corp. You can contact him with questions and
comments at claude@atrieva.com.

claude@atrieva.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

Figure 4: Custom rectangle fields

62 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Java DEVELOPER’S Journal

Vote Before
May 15, 1999
and be part of
Java History

www.JavaDevelopersJournal.com

THE MOST

PRESTIGIOUS AWARD

OF THE

JAVA INDUSTRY

64 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Raima Releases Velocis
Database Server 2.1
(Seattle, WA) – Raima Corpora-
tion has released Velocis Data-
base Server 2.1, which includes
new interfaces for multiple
development environments,
including Rogue Wave’s
DBTools.h++, Perl, Java and
Delphi. Other significant
improvements include an inte-
grated repair tool called “dbre-
pair” and two customized func-
tions: support for scrollable
cursors;
and an
extension
to ANSI
SQL
called “customized comparison
functions,” which supports a
development of sophisticated
multilingual or “Soundex” fea-
tures.

A free trial version of
Velocis 2.1 is now available for
download from Raima’s Web
site at www.raima.com.

Gefion Software Releases
InstantOnline Basic 2.0
(Hermosa Beach, CA) – Gefion
Software has released Instant-
Online Basic 2.0, its standards-
based, cross-platform compo-
nent suite for the development
of dynamic, interactive Web
sites.

InstantOnline Basic is a set
of Java Servlet components for
the development of Web appli-
cations. In addition to the
database access and HTML
presentation components
found in 1.0, InstantOnline
Basic 2.0 adds components for
file uploading and server-side
file manipulation, dynamic
Web forms, sending e-mail,

input validation and user ses-
sion data handling. Other
improvements are extended
variable handling, debug fea-
tures and enhanced error
handling.

For more information con-
tact Hans Bergsten at hans-
@gefionsoftware.com, or visit
www.gefionsoftware.com.

Petronio Technology Group
Offers Java Programming
Courses
(Boston, MA) – The Petronio
Technology Group has
announced two new public
Java programming courses:
• Boston, MA – March 1–5, 1999

– Ultimate Java Workshop
• Boston, MA – April 5–9, 1999

– Advanced Java Workshop
These have been added to

the list of other on-site work-
shops offered
by Petronio:
• Moving from Java 1.1 to Java

1.2
• JavaBeans Programming

Workshop
• Ultimate Java Programming

(for non-C, C or C++ develop-
ers)

• Advanced Java Workshop
(includes CORBA program-
ming)

• Object-Oriented Analysis and
Design

• Object-Oriented Design Pat-
terns (in C++ or Java)
To register or for more

information about these work-

shops and the prerequisites for
participating, please visit
www.petronio.com/pubtrain.-
shtml, or call 781 778-2000.

Inprise Announces Support
for JINI Technology in
Future Versions of JBuilder
(San Francisco, CA) -- Inprise
Corporation announced that it
will provide support for JINI,
Sun’s connected computing
technology, in future versions
of its award-winning JBuilder
family of Java development
tools. This support will allow
Java programmers to create
JINI technology-based applica-
tions.

JBuilder is Inprise Corpora-
tion’s award-winning family of
comprehen-
sive visual
development
tools for cre-
ating pure Java business and
database applications for the
enterprise. The JBuilder prod-
uct family features fast and
easy JavaBean component cre-
ation, a scalable database

architecture, robust visual
“Two-Way” development tools
and the ability to produce
“100% Pure Java” platform-
independent applications,
applets, servlets and Java-
Beans. The product’s open
environment supports the Java
2 platform, JDK 1.1.6,
JFC/Swing components, Java-
Beans, Enterprise JavaBeans,
CORBA, RMI, JDBC and all
major corporate database
servers.

For more information con-
tact Inprise at 800 233-2444 or
visit the JBuilder Web site at
www.inprise.com/jbuilder/.

PageMart & ObjectSpace
Profit from Strategic
Partnership
(Dallas, TX) – ObjectSpace
recently announced the results
of its ongoing
partnership
with PageMart
Wireless, Inc. The partnership
resulted in the development of
an advanced technology plat-
form to support PageMart’s
narrowband PCS network for
the advanced messaging indus-
try. This network provides
PageMart’s customers with
coast-to-coast connectivity on
the world’s largest, single-com-
pany-owned terrestrial two-way
wireless data network.

The enhanced technology
platform is based on a scalable,
distributed architecture devel-
oped by ObjectSpace’s Solu-
tions Consulting team specifi-
cally for
Page-
Mart.
The object-based system inte-
grates a range of advanced
technologies, uses the
Smalltalk, C++ and Java pro-
gramming languages, and was
codeveloped using an interac-
tive/incremental development
process. This approach reduced
risk and allowed a quick
response to changing project
needs and requirements.

For more information, visit
www.objectspace.com/news/
press/company/01-19-99.html.

Rogue Wave
Software
Announces
Objective Toolkit
for WFC 2.0
(Research Triangle Park, NC)
– The Stingray division of
Rogue Wave Software, Inc.,
has announced Objective
Toolkit for WFC 2.0, which
includes robust support for
advanced docking windows
and toolbars, enabling devel-
opers to add enhanced views

and controls to their applica-
tions.

Objective Toolkit’s dock-
ing windows support creates
a powerful framework that
makes any component dock-
able and any area a docking
target. The docking toolbar
support builds on the dock-
ing window support, allowing
toolbars to be docked along
any side of the application
windows or even float as a
separate window. Objective
Toolkit for WFC 2.0 also
boasts several additional
control enhancements to an
already powerful set of com-
plex GUI components and
advanced frameworks, all
tightly integrated with
Microsoft’s Visual J++ devel-
opment environment.

For more information call
Rogue Wave Software at 800
487-3217, e-mail sales@rogue-
wave.com or visit
www.roguewave.com.

65VOLUME: 4 ISSUE: 2 1999 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

SIGS Conference
www.sigs.com

66 • VOLUME: 4 ISSUE: 2 1999Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Networked Applications Bring Distributed Computing to Life
Never has distributed computing been as commonplace as it is in these days of Web appli-

cations or Networked Applications. The requirements on such applications for distributed pro-
cessing across multiple servers has brought distributed objects into the mainstream.

In the beginning of Java there was the home-grown approach. Certainly, there are plenty who
have ventured down the road of establishing a TCP-IP socket from a Java client in order to
remote control a related Java process on a server to get remote processing. We were all relieved
at how simple the socket management was with this language and how networking was an obvi-
ous part of Java’s lingua franca.

In the second year of Java we saw a surge on two fronts: Remote Method Invocation (RMI)
and Java for CORBA (IONA’s OrbixWeb and the Visigenic ORB). Early adopters moved quickly
to utilize these infrastructures for n-tier computing and distributed objects, while authors such
as Bob Orfali had a veritable field day creating an aura for distributed Java objects. In 1997, if
you weren’t engaged in IDL, RMI, CORBA, IIOP and Java, you might as well have been living in a
cave.

During the spring of 1997, in the midst of the second Java One conference, JavaSoft
announced the Enterprise JavaBeans specification plans. The promise was impressive: server
side components that could interoperate and be part of a comprehensive enterprise class pro-
cessing environment (messaging, transactions, persistence, etc.). Of course, a specification is
just that – a spec.

By the following Java One conference, several companies formally announced plans to ship
EJB implementations. Two of these companies were Weblogic (Tengah) and Progress Software
(Apptivity 3.0).

One of the major significances of EJBs is that its design can bring the powerful concept of
server, business logic componentry to the masses. Sure, with RMI or CORBA, business logic
components could always be achieved by the gurus. But a really great EJB implementation, cou-
pled with tool support, can allow an “average Java Joe” to make use of the organization, design
and infrastructure. That is very significant.

Remember what SQL’s “SELECT * FROM CUSTOMER” did for the average programmer faced
with database query challenges? An EJB implementation, in and of itself, is not enough. The
average developer and the developer with serious productivity requirements demand an inte-
grated environment with EJB components, JavaBeans, an event infrastructure and state of the
art IDE to put it all together.

As we stand today, EJBs are already receiving criticism for not being “run anywhere, any-
time” – the familiar psalm of the Java-critical choir. The complaint is that an EJB from one EJB
container cannot instantly be ported to a different EJB container without significant effort. The
fact is that every EJB implementation vendor is adding “special sauce” to its product – this is
good business practice and it benefits the developer in the long run.

What if All Database Vendors Provided Only Strict
SQL Implementation?

Even client-side JavaBeans didn’t easily move from one design time container (IDE) to anoth-
er. For example, Sun’s own Java Studio produced Beans that were wrapped to provide additional
value within Studio, but did not port to other IDEs.

This is not such a big problem, however, the actual Bean part of the wrapped component can
always be had by the developer or put forward by the product of the Bean. Also, this lower
denominator is very adept at transport. The producer of EJBs or JavaBeans is responsible for
putting forward a full-blown “special sauce” component and a plain vanilla specification com-
ponent, whenever possible.

RMI, CORBA, EJB – the movement toward distributed computing and components is on and
it’s headed for the masses. In 1999 the average Java Joe developer will definitely be able to cre-
ate and use Enterprise JavaBeans in the construction of Networked Applications. This is a big
step forward for Java as well as the vendors providing solutions to developers.

Java – Into Its 4th Year
Part 2 – A review of the distributed

computing environment for Java

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit. You can e-mail him at
george@apptivity.com.

THE GRIND

“In 1997, if you

weren’t engaged

in IDL, RMI,

CORBA, IIOP and

Java, you might

as well have been

living in a cave.”

george@apptivity.com

http://www.JavaDevelopersJournal.com 67Java DEVELOPER’S JournalVOLUME: 4 ISSUE: 2 1999 •

ObjectSpace
www.objectspace.com

68 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com• VOLUME: 4 ISSUE: 2 1999

KL Group
www.klg.com

